Synthesis, conformational analysis, and biological activity of opioid peptide analogs containing side chain fluorinated amino acids

Author(s):  
D. Winkler ◽  
N. Sewald ◽  
M. Gussmann ◽  
M. Thormann ◽  
H. -J. Hofmann ◽  
...  
1998 ◽  
Vol 33 (4) ◽  
pp. 331-334 ◽  
Author(s):  
Irina Bobrova ◽  
Natalia Mishlakova ◽  
Anette Selander ◽  
Elena Mekshun ◽  
Guntis Rozental

2018 ◽  
Author(s):  
João R. Robalo ◽  
Ana Vila Verde

<div><div><div><p>Fluorination can dramatically improve the thermal and proteolytic stability of proteins and their enzymatic activity. Key to the impact of fluorination on protein properties is the hydrophobicity of fluorinated amino acids. We use molecular dynamics simulations, together with a new fixed-charge, atomistic force field, to quantify the changes in hydration free energy for amino acids with alkyl side chains and with 1 to 6 –CH to –CF side chain substitutions. Fluorination changes the hydration free energy by 1.5 to +2 kcal mol<sup>-</sup>1, but the number of fluorines is a poor predictor of hydrophobicity. Changes in hydration free energy reflect two main contributions: i) fluorination alters side chain-water interactions; we identify a crossover point from hydrophilic to hydrophobic fluoromethyl groups which may be used to estimate the hydrophobicity of fluorinated alkyl side-chains; ii) fluorination alters the number of backbone-water hydrogen bonds via changes in the relative side chain-backbone conformation. Our results offer a road map to mechanistically understand how fluorination alters hydrophobicity of (bio)polymers.</p></div></div></div>


2018 ◽  
Author(s):  
João R. Robalo ◽  
Ana Vila Verde

<div><div><div><p>Fluorination can dramatically improve the thermal and proteolytic stability of proteins and their enzymatic activity. Key to the impact of fluorination on protein properties is the hydrophobicity of fluorinated amino acids. We use molecular dynamics simulations, together with a new fixed-charge, atomistic force field, to quantify the changes in hydration free energy for amino acids with alkyl side chains and with 1 to 6 –CH to –CF side chain substitutions. Fluorination changes the hydration free energy by 1.5 to +2 kcal mol<sup>-</sup>1, but the number of fluorines is a poor predictor of hydrophobicity. Changes in hydration free energy reflect two main contributions: i) fluorination alters side chain-water interactions; we identify a crossover point from hydrophilic to hydrophobic fluoromethyl groups which may be used to estimate the hydrophobicity of fluorinated alkyl side-chains; ii) fluorination alters the number of backbone-water hydrogen bonds via changes in the relative side chain-backbone conformation. Our results offer a road map to mechanistically understand how fluorination alters hydrophobicity of (bio)polymers.</p></div></div></div>


ChemInform ◽  
2010 ◽  
Vol 29 (36) ◽  
pp. no-no
Author(s):  
I. BOBROVA ◽  
N. MISHLAKOVA ◽  
A. SELANDER ◽  
E. MEKSHUN ◽  
G. ROZENTAL

2017 ◽  
Vol 13 ◽  
pp. 2869-2882 ◽  
Author(s):  
Susanne Huhmann ◽  
Anne-Katrin Stegemann ◽  
Kristin Folmert ◽  
Damian Klemczak ◽  
Johann Moschner ◽  
...  

Rapid digestion by proteases limits the application of peptides as therapeutics. One strategy to increase the proteolytic stability of peptides is the modification with fluorinated amino acids. This study presents a systematic investigation of the effects of fluorinated leucine and isoleucine derivatives on the proteolytic stability of a peptide that was designed to comprise substrate specificities of different proteases. Therefore, leucine, isoleucine, and their side-chain fluorinated variants were site-specifically incorporated at different positions of this peptide resulting in a library of 13 distinct peptides. The stability of these peptides towards proteolysis by α-chymotrypsin, pepsin, proteinase K, and elastase was studied, and this process was followed by an FL-RP-HPLC assay in combination with mass spectrometry. In a few cases, we observed an exceptional increase in proteolytic stability upon introduction of the fluorine substituents. The opposite phenomenon was observed in other cases, and this may be explained by specific interactions of fluorinated residues with the respective enzyme binding sites. Noteworthy is that 5,5,5-trifluoroisoleucine is able to significantly protect peptides from proteolysis by all enzymes included in this study when positioned N-terminal to the cleavage site. These results provide valuable information for the application of fluorinated amino acids in the design of proteolytically stable peptide-based pharmaceuticals.


Sign in / Sign up

Export Citation Format

Share Document