Estimation of Travel Time Reliability Using Stochastic User Equilibrium Assignment Sensitivity

Author(s):  
Chris Cassir ◽  
Michael G. H. Bell
2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Long Xue-qin ◽  
Wang Jian-jun ◽  
Guan Hong-zhi

In order to reflect influence of travel time reliability on route choosing, considering traffic accidents’ influence under random state, we analyzed travel distance distribution regularity of each grade road, through traffic assignment. Travel time reliability model was produced and modified, considering the randomness of accidents, delay time, and capacity. The maximum preponderant travel range of each grade road was defined, and stochastic user equilibrium assignment was adopted to get travel turnover and distance, based on the corrected model. And then regulation of distance distribution was analyzed. Conclusion shows that reasonable travel distance of local way, distribution way, and primary way is 1 km, 2.28 km, and 3.54 km, respectively.


2011 ◽  
Vol 130-134 ◽  
pp. 3716-3720
Author(s):  
Yi Ran Cheng ◽  
Yin Han ◽  
Xin Kai Jiang ◽  
Jia Lei Gu

Considering the un-deterministic transportation networks, the paper proposes the change of the route choice decisions under the stochastic transportation networks. The route choice behavior is described as a choice for a time shortest route which is subject to a time-reliability level. The paper also considered this new route choice behavior in the stochastic user equilibrium model, and proposed stochastic user equilibrium model based on the optimized reliability travel time route choice behavior in the stochastic networks. The equivalence and uniqueness of the solution of the model are demonstrated. Numerical results of a small network show that the proposed model can reflect the real traveler’s route choice behavior in stochastic transportation networks.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Hua Wang ◽  
Wei Mao ◽  
Hu Shao

Previous studies of road congestion pricing problem assume that transportation networks are managed by a central administrative authority with an objective of improving the performance of the whole network. In practice, a transportation network may be comprised of multiple independent local regions with relative independent objectives. In this paper, we investigate the cooperative and competitive behaviors among multiple regions in congestion pricing considering stochastic conditions; especially demand uncertainty is taken into account in transportation modelling. The corresponding congestion pricing models are formulated as a bilevel programming problem. In the upper level, congestion pricing model either aims to maximize the regional social welfare in competitive schemes or attempts to maximize the total social welfare of multiple regions in cooperative schemes. In the lower level, travellers are assumed to follow a reliability-based stochastic user equilibrium principle considering risks of late arrival under uncertain conditions. Numerical examples are carried out to compare the effects of different pricing schemes and to analyze the impact of travel time reliability. It is found that cooperative pricing strategy performs better than competitive strategy in improving network performance, and the pricing effects of both schemes are quite sensitive to travel time reliability.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Qinrui Tang ◽  
Bernhard Friedrich

Urban road networks may benefit from left turn prohibition at signalized intersections regarding capacity, for particular traffic demand patterns. The objective of this paper is to propose a method for minimizing the total travel time by prohibiting left turns at intersections. With the flows obtained from the stochastic user equilibrium model, we were able to derive the stage generation, stage sequence, cycle length, and the green durations using a stage-based method which can handle the case that stages are sharing movements. The final output is a list of the prohibited left turns in the network and a new signal timing plan for every intersection. The optimal list of prohibited left turns was found using a genetic algorithm, and a combination of several algorithms was employed for the signal timing plan. The results show that left turn prohibition may lead to travel time reduction. Therefore, when designing a signal timing plan, left turn prohibition should be considered on a par with other left turn treatment options.


Author(s):  
Haitao Hu ◽  
Zhanbo Sun ◽  
Runzhe Liu ◽  
Xia Yang

As a tool to assist traffic guidance and improve service quality, location-based service (LBS) platforms such as route navigation apps rely heavily on the collection and analysis of users’ location/trajectory information, which may evoke privacy concerns. Because of such privacy concerns, users may choose not to provide their information. In certain cases, this may lead to the problem of insufficient data for LBS applications (e.g., travel time estimation). To address this issue, the paper develops a modeling framework to quantify the levels of privacy for mixed user groups and proposes an incentive mechanism to encourage users to provide their location/trajectory information. It is assumed that LBS users have smaller travel time perception error but experience some extra privacy costs compared with the non-LBS users. A bi-level optimal incentive model with stochastic user equilibrium and elastic demand is developed to capture the mixed behavior of multi-class network users. The problem is solved using a meta-heuristic approach combined of genetic algorithm, successive average algorithm, and multiple behavior equilibrium assignment algorithm. The results reveal that the modeling framework can capture the mixed behavior of groups with different privacy levels. The proposed incentive mechanism is able to ensure sufficient data, and simultaneously minimize the required incentive.


2016 ◽  
Vol 29 (6) ◽  
pp. 1629-1649 ◽  
Author(s):  
Gui Yong ◽  
Haijun Huang ◽  
Tianliang Liu ◽  
Yan Xu

Sign in / Sign up

Export Citation Format

Share Document