Modeling and Implementation of Risk-Averse Preferences in Stochastic Programs Using Risk Measures

Author(s):  
Pavlo A. Krokhmal ◽  
Robert Murphey
2013 ◽  
Vol 50 (02) ◽  
pp. 533-541 ◽  
Author(s):  
Alexander Shapiro

In this paper we study asymptotic consistency of law invariant convex risk measures and the corresponding risk averse stochastic programming problems for independent, identically distributed data. Under mild regularity conditions, we prove a law of large numbers and epiconvergence of the corresponding statistical estimators. This can be applied in a straightforward way to establish convergence with probability 1 of sample-based estimators of risk averse stochastic programming problems.


2013 ◽  
Vol 50 (2) ◽  
pp. 533-541 ◽  
Author(s):  
Alexander Shapiro

In this paper we study asymptotic consistency of law invariant convex risk measures and the corresponding risk averse stochastic programming problems for independent, identically distributed data. Under mild regularity conditions, we prove a law of large numbers and epiconvergence of the corresponding statistical estimators. This can be applied in a straightforward way to establish convergence with probability 1 of sample-based estimators of risk averse stochastic programming problems.


2020 ◽  
Vol 68 (5) ◽  
pp. 1576-1584 ◽  
Author(s):  
Alexander Shapiro ◽  
Linwei Xin

The authors extend previous studies of time inconsistency to risk averse (distributionally robust) inventory models and show that time inconsistency is not unique to robust multistage decision making, but may happen for a large class of risk averse/distributionally robust settings. In particular, they demonstrate that if the respective risk measures are not strictly monotone, then there may exist infinitely many optimal policies which are not base-stock and not time consistent. This is in a sharp contrast with the risk neutral formulation of the inventory model where all optimal policies are base-stock and time consistent.


2021 ◽  
Author(s):  
Alois Pichler ◽  
Rui Peng Liu ◽  
Alexander Shapiro

This paper addresses time consistency of risk-averse optimal stopping in stochastic optimization. It is demonstrated that time-consistent optimal stopping entails a specific structure of the functionals describing the transition between consecutive stages. The stopping risk measures capture this structural behavior and allow natural dynamic equations for risk-averse decision making over time. Consequently, associated optimal policies satisfy Bellman’s principle of optimality, which characterizes optimal policies for optimization by stating that a decision maker should not reconsider previous decisions retrospectively. We also discuss numerical approaches to solving such problems.


2018 ◽  
Vol 28 (2) ◽  
pp. 1337-1366 ◽  
Author(s):  
Vincent Guigues ◽  
Volker Krätschmer ◽  
Alexander Shapiro

Author(s):  
Jamie Fairbrother ◽  
Amanda Turner ◽  
Stein W. Wallace

AbstractScenario generation is the construction of a discrete random vector to represent parameters of uncertain values in a stochastic program. Most approaches to scenario generation are distribution-driven, that is, they attempt to construct a random vector which captures well in a probabilistic sense the uncertainty. On the other hand, a problem-driven approach may be able to exploit the structure of a problem to provide a more concise representation of the uncertainty. In this paper we propose an analytic approach to problem-driven scenario generation. This approach applies to stochastic programs where a tail risk measure, such as conditional value-at-risk, is applied to a loss function. Since tail risk measures only depend on the upper tail of a distribution, standard methods of scenario generation, which typically spread their scenarios evenly across the support of the random vector, struggle to adequately represent tail risk. Our scenario generation approach works by targeting the construction of scenarios in areas of the distribution corresponding to the tails of the loss distributions. We provide conditions under which our approach is consistent with sampling, and as proof-of-concept demonstrate how our approach could be applied to two classes of problem, namely network design and portfolio selection. Numerical tests on the portfolio selection problem demonstrate that our approach yields better and more stable solutions compared to standard Monte Carlo sampling.


Sign in / Sign up

Export Citation Format

Share Document