scholarly journals Multi-Step Motion Planning for Free-Climbing Robots

Author(s):  
Tim Bretl ◽  
Sanjay Lall ◽  
Jean-Claude Latombe ◽  
Stephen Rock
Robotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 96
Author(s):  
Yankai Wang ◽  
Qiaoling Du ◽  
Tianhe Zhang ◽  
Chengze Xue

Hybrid mobile robots with two motion modes of a wheeled vehicle and truss structure with the ability to climb poles have significant flexibility. The motion planning of this kind of robot on a pole has been widely studied, but few studies have focused on the transition of the robot from the ground to the pole. In this study, a locomotion strategy of wheeled-legged pole-climbing robots (the WL_PCR) is proposed to solve the problem of ground-to-pole transition. By analyzing the force of static and dynamic process in the ground-to-pole transition, the condition of torque provided by the gripper and moving joint is proposed. The mathematical expression of Centre of Mass (CoM) of the wheeled-legged pole-climbing robots is utilized, and the conditions for the robot to smoothly transition from the ground to the vertical pole are proposed. Finally, the feasibility of this method is proved by the simulation and experimentation of a locomotion strategy on wheeled-legged pole-climbing robots.


Author(s):  
Xuefeng Zhou ◽  
Li Jiang ◽  
Yisheng Guan ◽  
Haifei Zhu ◽  
Dan Huang ◽  
...  

Purpose Applications of robotic systems in agriculture, forestry and high-altitude work will enter a new and huge stage in the near future. For these application fields, climbing robots have attracted much attention and have become one central topic in robotic research. The purpose of this paper is to propose an energy-optimal motion planning method for climbing robots that are applied in an outdoor environment. Design/methodology/approach First, a self-designed climbing robot named Climbot is briefly introduced. Then, an energy-optimal motion planning method is proposed for Climbot with simultaneous consideration of kinematic constraints and dynamic constraints. To decrease computing complexity, an acceleration continuous trajectory planner and a path planner based on spatial continuous curve are designed. Simulation and experimental results indicate that this method can search an energy-optimal path effectively. Findings Climbot can evidently reduce energy consumption when it moves along the energy-optimal path derived by the method used in this paper. Research limitations/implications Only one step climbing motion planning is considered in this method. Practical implications With the proposed motion planning method, climbing robots applied in an outdoor environment can commit more missions with limit power supply. In addition, it is also proved that this motion planning method is effective in a complicated obstacle environment with collision-free constraint. Originality/value The main contribution of this paper is that it establishes a two-planner system to solve the complex motion planning problem with kinodynamic constraints.


Author(s):  
Carlos Henrique Farias dos Santos ◽  
Mohamed Hassan Abdali ◽  
Daniel Martins ◽  
Campos Bonilla Aníbal Alexandre

Author(s):  
Carlotta Mummolo ◽  
Luigi Mangialardi ◽  
Joo H. Kim

Bipeds’ trajectories and control during walking are closely coupled with the contact force distribution in time and space as an indeterminate problem. Therefore, generating the motion of redundant bipeds in presence of unilateral contact is usually formulated as a nonlinear constrained optimization problem. The optimal walking motion must be solved in terms of trajectories, control, contact status (i.e., when, where, and whether a foot is in contact), and contact response (i.e., ground reaction forces). The solution for this problem requires predictive methods within the general optimal motion planning framework. However, there is a lack of fully predictive methods that can concurrently solve for all the above mentioned unknowns. This represents an important challenge in the simulation, design, analysis, and control of general robotic systems. A novel approach for the optimal motion planning of multibody systems with contacts is developed, based on a Sequential Quadratic Programming (SQP) algorithm for Nonlinear Programming (NLP). The complete formulation is presented and demonstrated with numerical experiments on a simple planar biped with the assigned task of one complete step motion in forward progression.


2006 ◽  
Author(s):  
Jonathan Vaughan ◽  
Steven Jax ◽  
David A. Rosenbaum
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document