A Novel Chamber Scheduling Method in Etching Tools Using Adaptive Neural Networks

Author(s):  
Hua Xu ◽  
Peifa Jia ◽  
Xuegong Zhang
2020 ◽  
Vol 34 (04) ◽  
pp. 5077-5084
Author(s):  
Tengfei Ma ◽  
Patrick Ferber ◽  
Siyu Huo ◽  
Jie Chen ◽  
Michael Katz

Automated planning is one of the foundational areas of AI. Since no single planner can work well for all tasks and domains, portfolio-based techniques have become increasingly popular in recent years. In particular, deep learning emerges as a promising methodology for online planner selection. Owing to the recent development of structural graph representations of planning tasks, we propose a graph neural network (GNN) approach to selecting candidate planners. GNNs are advantageous over a straightforward alternative, the convolutional neural networks, in that they are invariant to node permutations and that they incorporate node labels for better inference.Additionally, for cost-optimal planning, we propose a two-stage adaptive scheduling method to further improve the likelihood that a given task is solved in time. The scheduler may switch at halftime to a different planner, conditioned on the observed performance of the first one. Experimental results validate the effectiveness of the proposed method against strong baselines, both deep learning and non-deep learning based.The code is available at https://github.com/matenure/GNN_planner.


Sign in / Sign up

Export Citation Format

Share Document