P Systems with Active Membranes, Without Polarizations and Without Dissolution: A Characterization of P

Author(s):  
Miguel A. Gutiérrez-Naranjo ◽  
Mario J. Pérez-Jiménez ◽  
Agustín Riscos-Núñez ◽  
Francisco J. Romero-Campero
Keyword(s):  
Author(s):  
Andrea Valsecchi ◽  
Antonio E. Porreca ◽  
Alberto Leporati ◽  
Giancarlo Mauri ◽  
Claudio Zandron

Author(s):  
José María Cecilia Canales ◽  
José Manuel García Carrasco ◽  
Ginés David Guerrero Hernandez ◽  
Miguel Ángel Martínez del Amor ◽  
Ignacio Pérez Hurtado de Mendoza ◽  
...  
Keyword(s):  

2012 ◽  
Vol 24 (3) ◽  
pp. 805-825 ◽  
Author(s):  
Linqiang Pan ◽  
Jun Wang ◽  
Hendrik Jan Hoogeboom

In a biological nervous system, astrocytes play an important role in the functioning and interaction of neurons, and astrocytes have excitatory and inhibitory influence on synapses. In this work, with this biological inspiration, a class of computation devices that consist of neurons and astrocytes is introduced, called spiking neural P systems with astrocytes (SNPA systems). The computation power of SNPA systems is investigated. It is proved that SNPA systems with simple neurons (all neurons have the same rule, one per neuron, of a very simple form) are Turing universal in both generative and accepting modes. If a bound is given on the number of spikes present in any neuron along a computation, then the computation power of SNPA systems is diminished. In this case, a characterization of semilinear sets of numbers is obtained.


2011 ◽  
Vol 22 (01) ◽  
pp. 29-38 ◽  
Author(s):  
LINQIANG PAN ◽  
DANIEL DÍAZ-PERNIL ◽  
MARIO J. PÉREZ-JIMÉNEZ

Ramsey numbers deal with conditions when a combinatorial object necessarily contains some smaller given objects. It is well known that it is very difficult to obtain the values of Ramsey numbers. In this work, a theoretical chemical/biological solution is presented in terms of membrane computing for the decision version of Ramsey number problem, that is, to decide whether an integer n is the value of Ramsey number R(k, l), where k and l are integers.


2013 ◽  
Vol 25 (4) ◽  
pp. 1047-1071 ◽  
Author(s):  
Giancarlo Mauri ◽  
Alberto Leporati ◽  
Antonio E. Porreca ◽  
Claudio Zandron
Keyword(s):  

2007 ◽  
Vol 18 (02) ◽  
pp. 415-431 ◽  
Author(s):  
LUDĚK CIENCIALA ◽  
LUCIE CIENCIALOVÁ ◽  
PIERLUIGI FRISCO ◽  
PETR SOSÍK

We characterize the computational power of several restricted variants of communicating P systems. We show that 2-deterministic communicating P systems with 2 membranes, working in either minimally or maximally parallel mode, are computationally universal. Considering the sequential mode, 2 membranes are shown to characterize the power of partially blind multicounter machines. Next, a characterization of the power of 1-deterministic communicating P systems is given. Finally, we show that the nondeterministic variant in maximally parallel mode is universal already with 1 membrane. These results demonstrate differences in computational power between nondeterminism, 2-determinism and 1-determinism, on one hand, and between sequential, minimally and maximally parallel modes, on the other hand.


2018 ◽  
Vol 29 (5) ◽  
pp. 663-680 ◽  
Author(s):  
YUEGUO LUO ◽  
HAIJUN TAN ◽  
YING ZHANG ◽  
YUN JIANG

P systems with active membranes are a class of bioinspired computing models, where the rules are used in the non-deterministic maximally parallel manner. In this paper, first, a new variant of timed P systems with active membranes is proposed, where the application of rules can be regulated by promoters with only two polarizations. Next, we prove that any Turing computable set of numbers can be generated by such a P system in the time-free way. Moreover, we construct a uniform solution to the$\mathcal{SAT}$problem in the framework of such recognizer timed P systems in polynomial time, and the feasibility and effectiveness of the proposed system is demonstrated by an instance. Compared with the existing methods, the P systems constructed in our work require fewer necessary resources and RS-steps, which show that the solution is effective toNP-complete problem.


Sign in / Sign up

Export Citation Format

Share Document