parallel mode
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 45)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 7 ◽  
pp. e812
Author(s):  
Huwaida T. Elshoush ◽  
Banan M. Al-Tayeb ◽  
Khalil T. Obeid

This paper presents a new approach to enhance the security and performance of the Serpent algorithm. The main concepts of this approach is to generate a sub key for each block using Lorenz 96 chaos and then run the process of encryption and decryption in ECB parallel mode. The proposed method has been implemented in Java, openjdk version “11.0.11”; and for the analysis of the tested RGB images, Python 3.6 was used. Comprehensive experiments on widely used metrics demonstrate the effectiveness of the proposed method against differential attacks, brute force attacks and statistical attacks, while achieving superb results compared to related schemes. Moreover, the encryption quality, Shannon entropy, correlation coefficients, histogram analysis and differential analysis all accomplished affirmative results. Furthermore, the reduction in encryption/decryption time was over 61%. Moreover, the proposed method cipher was tested using the Statistical Test Suite (STS) recommended by the NIST and passed them all ensuring the randomness of the cipher output. Thus, the approach demonstrated the potential of the improved Serpent-ECB algorithm with Lorenz 96 chaos-based block key generation (BKG) and gave favorable results. Specifically, compared to existing encryption schemes, it proclaimed its effectiveness.


2021 ◽  
Vol 923 (2) ◽  
pp. 156
Author(s):  
Y. Sophia Dai ◽  
Matthew M. Malkan ◽  
Harry I. Teplitz ◽  
Claudia Scarlata ◽  
Anahita Alavi ◽  
...  

Abstract We identify a sample of spectroscopically measured emission line galaxy (ELG) Pairs up to z = 1.6 from the Wide Field Camera 3 (WFC3) Infrared Spectroscopic Parallels (WISP) survey. WISP obtained slitless, near-infrared grism spectroscopy along with direct imaging in the J and H bands by observing in the pure-parallel mode with the WFC3 on board the Hubble Space Telescope. From our search of 419 WISP fields covering an area of ∼0.5 deg2, we find 413 ELG pair systems, mostly H α emitters. We then derive reliable star formation rates (SFRs) based on the attenuation-corrected H α fluxes. Compared to isolated galaxies, we find an average SFR enhancement of 40%–65%, which is stronger for major Pairs and Pairs with smaller velocity separations (Δ v < 300 km s−1). Based on the stacked spectra from various subsamples, we study the trends of emission line ratios in pairs, and find a general consistency with enhanced lower ionization lines. We study the pair fraction among ELGs, and find a marginally significant increase with redshift f ∝ (1 + z) α , where the power-law index α = 0.58 ± 0.17 from z ∼ 0.2 to ∼1.6. The fraction of active galactic nuclei is found to be the same in the ELG Pairs as compared to the isolated ELGs.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiaozheng Xu ◽  
Takeya Masubuchi ◽  
Qixu Cai ◽  
Yunlong Zhao ◽  
Enfu Hui

A large number of inhibitory receptors recruit SHP1 and/or SHP2, tandem-SH2-containing phosphatases, through phosphotyrosine-based motifs ITIM and ITSM. Despite the similarity, these receptors exhibit differential effector binding specificities, as exemplified by the immune checkpoint receptors PD-1 and BTLA, which preferentially recruit SHP2 and SHP1 respectively. The molecular basis by which structurally similar receptors discriminate SHP1 and SHP2 is unclear. Here, we provide evidence that human PD-1 and BTLA optimally bind to SHP1 and SHP2 via a bivalent, parallel mode that involves both SH2 domains of SHP1 or SHP2. PD-1 mainly uses its ITSM to prefer SHP2 over SHP1 via their C-terminal SH2 domains (cSH2): swapping SHP1-cSH2 with SHP2-cSH2 enabled PD-1:SHP1 association in T cells. In contrast, BTLA primarily utilizes its ITIM to prefer SHP1 over SHP2 via their N-terminal SH2 domains (nSH2). The ITIM of PD-1, however, appeared to be de-emphasized due to a glycine at pY+1 position. Substitution of this glycine with alanine, a residue conserved in BTLA and several SHP1-recruiting receptors, was sufficient to induce PD-1:SHP1 interaction in T cells. Finally, structural simulation and mutagenesis screening showed that SHP1 recruitment activity exhibits a bell-shaped dependence on the side chain volume of the pY+1 residue of ITIM. Collectively, we provide a molecular interpretation of the SHP1/SHP2-binding specificities of PD-1 and BTLA, with implications for the mechanisms of a large family of therapeutically relevant receptors.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012038
Author(s):  
M F Karavay ◽  
A M Mikhailov

Abstract The paper discusses On-Board Computing Control Systems (OBCS) in astronautics, avionics, autonomous mobile devices, robotics, weapons control and multi-core microprocessors. This is sort of a “backbone”, which unites many sensors, calculators, control and executive devices. The architecture of these networks was developed some 30-40 years ago. At that time, these systems met the technical conditions in terms of dynamics and reliability. Nowadays, these systems must perform their functions for 10 to 15 years without maintenance. The performance of system networks must be high enough to solve such tasks as monitoring “swarms” that comprise hundreds of objects or work as a “garbage collectors” in space orbits. Nevertheless modern system networks continue to be based on bus or multi-bus architectures. Since these systems are serial for active nodes, a multi-bus solution is a main way to increase the performance of networks by using very high frequencies that amount to 2 ÷ 4 GHz. It’s an extensive path of development, which is problematic. More acceptable would be an intensive path of development, which, in electronics and computer engineering, is associated with the parallelism of task execution. It means that the operating frequencies may not be ultra-high, not exceeding that of modern devices for frequencies of 10 – 600 MHz. However, such devices should work in a parallel mode. The paper proposes a new approach to designing of heterogeneous parallel control system networks, solving parallel tasks, and a conflict-free management of “passive” nodes. To the best of our knowledge, such control system networks are not available as yet.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kyunghwan Dokgo ◽  
Kyoung-Joo Hwang ◽  
James L. Burch ◽  
Peter H. Yoon

Understanding the nature and characteristics of high-frequency waves inside a flux rope may be important as the wave-particle interaction is important for charged-particle energization and the ensuing dissipation process. We analyze waves generated by an electron beam in a crater-shaped magnetic flux rope observed by MMS spacecraft on the dawnside tailward magnetopause. In this MMS observation, a depression of magnetic field, or a crater, of ∼100 km is located at the center of the magnetic flux rope of ∼650 km. There exist parallel and perpendicular electrostatic wave modes inside the depression of the magnetic field at the center of the flux rope, and they are distinguished by their locations and frequencies. The parallel mode exists at the center of the magnetic depression and its power spectrum peaks below Fce (electron cyclotron frequency). In contrast, the perpendicular mode exists in the outer region associated with the magnetic depression, and its power spectrum peaks near Fce. The linear analysis of kinetic instability using a generalized dispersion solver shows that the parallel mode can be generated by the electron beam of 5,000 km/s. They can thermalize electrons ≲100 eV effectively. However, the generation mechanism of the perpendicular mode is not clear yet, which requires further study.


2021 ◽  
Vol 27 (5) ◽  
pp. 1113-1122
Author(s):  
Gary W. Paterson ◽  
Gavin M. Macauley ◽  
Stephen McVitie ◽  
Yoshihiko Togawa

In Part I of this diptych, we outline the parallel mode of differential phase contrast (TEM-DPC), which uses real-space distortion of Fresnel images arising from electrostatic or magnetostatic fields to quantify the phase gradient of samples with some degree of structural contrast. We present an analysis methodology and the associated software tools for the TEM-DPC method and, using them together with numerical simulations, compare the technique to the widely used method of phase recovery based on the transport-of-intensity equation (TIE), thereby highlighting the relative advantages and limitations of each. The TEM-DPC technique is particularly suitable for in situ studies of samples with significant structural contrast and, as such, complements the TIE method since structural contrast usually hinders the latter, but is an essential feature that enables the former. In Part II of this work, we apply the theory and methodology presented to the analysis of experimental data to gain insight into two-dimensional magnetic phase transitions.


2021 ◽  
Author(s):  
Enfu Hui ◽  
Xiaozheng Xu ◽  
Takeya Masubuchi ◽  
Yunlong Zhao

Numerous inhibitory immunoreceptors operate by recruiting phosphatase effectors Shp1 and Shp2 through conserved motifs ITIM and ITSM. Despite the similarity, these receptors exhibit distinct effector binding specificities, as exemplified by PD-1 and BTLA, which preferentially recruit Shp2 and Shp1 respectively. The molecular basis of Shp1/Shp2 discrimination is unclear. Here, we provide evidence that optimal PD-1 and BTLA binding to both Shp1 and Shp2 occurs via a bivalent, parallel mode that involves both SH2 domains of Shp1/Shp2. Moreover, PD-1 mainly uses its ITSM to discriminate Shp2 from Shp1 via their C-terminal SH2 domains. Supportive of this model, swapping the Shp1-cSH2 with Shp2-cSH2 enabled PD-1:Shp1 association in T cells. In contrast, BTLA primarily utilizes its ITIM to discriminate Shp1 from Shp2 via their N-terminal SH2 domains. Substitution of glycine at pY+1 position of the PD-1-ITIM with alanine, a residue conserved in several Shp1-recruiting receptors, was sufficient to induce PD-1:Shp1 interaction in T cells. Finally, mutagenesis screening shows that Shp1 recruitment exhibits a bell-shaped dependence on the side chain volume of the pY+1 residue of ITIM. Collectively, we provide a molecular interpretation of the Shp1/Shp2-binding specificities of PD-1 and BTLA, with general implications for the mechanism of effector discrimination by inhibitory receptors.


2021 ◽  
Author(s):  
Changjian Deng

Abstract With the development of vehicle and mobile robot wireless technology, there are lots of data may transmit simultaneously. So, the paper proposes a multi core data transmission and network management method. In this method, the MIMO multi core system works in parallel mode; and it has multi agent feature in network operation, meanwhile it has feature of sub-graph decomposition characteristics also in MIMO topology of network. Based on the mathematical model of MIMO multi core system, the paper designs two prototype of network gateway, one is made of five CC2530 , a CAN module, and it is a demo of a vehicles gateway; the another is CC1320 multicore gateway system. The simulations and experiments show the feasibility and effective of this wireless multi core data transmission and management method


Sign in / Sign up

Export Citation Format

Share Document