scholarly journals Practical Construction of k-Nearest Neighbor Graphs in Metric Spaces

Author(s):  
Rodrigo Paredes ◽  
Edgar Chávez ◽  
Karina Figueroa ◽  
Gonzalo Navarro
2007 ◽  
Vol 01 (02) ◽  
pp. 147-170 ◽  
Author(s):  
KASTURI CHATTERJEE ◽  
SHU-CHING CHEN

An efficient access and indexing framework, called Affinity Hybrid Tree (AH-Tree), is proposed which combines feature and metric spaces in a novel way. The proposed framework helps to organize large image databases and support popular multimedia retrieval mechanisms like Content-Based Image Retrieval (CBIR). It is efficient in terms of computational overhead and fairly accurate in producing query results close to human perception. AH-Tree, by being able to introduce the high level semantic image relationship as it is in its index structure, solves the problem of translating the content-similarity measurement into feature level equivalence which is both painstaking and error-prone. Algorithms for similarity (range and k-nearest neighbor) queries are implemented and extensive experiments are performed which produces encouraging results with low I/O and distance computations and high precision of query results.


2005 ◽  
Vol 17 (4) ◽  
pp. 535-550 ◽  
Author(s):  
D. Cantone ◽  
A. Ferro ◽  
A. Pulvirenti ◽  
D.R. Recupero ◽  
D. Shasha

Author(s):  
Xin Ding ◽  
Yuanliang Zhang ◽  
Lu Chen ◽  
Keyu Yang ◽  
Yunjun Gao

Author(s):  
Xin Ding ◽  
Yuanliang Zhang ◽  
Lu Chen ◽  
Yunjun Gao ◽  
Baihua Zheng

Author(s):  
M. Jeyanthi ◽  
C. Velayutham

In Science and Technology Development BCI plays a vital role in the field of Research. Classification is a data mining technique used to predict group membership for data instances. Analyses of BCI data are challenging because feature extraction and classification of these data are more difficult as compared with those applied to raw data. In this paper, We extracted features using statistical Haralick features from the raw EEG data . Then the features are Normalized, Binning is used to improve the accuracy of the predictive models by reducing noise and eliminate some irrelevant attributes and then the classification is performed using different classification techniques such as Naïve Bayes, k-nearest neighbor classifier, SVM classifier using BCI dataset. Finally we propose the SVM classification algorithm for the BCI data set.


2020 ◽  
Vol 17 (1) ◽  
pp. 319-328
Author(s):  
Ade Muchlis Maulana Anwar ◽  
Prihastuti Harsani ◽  
Aries Maesya

Population Data is individual data or aggregate data that is structured as a result of Population Registration and Civil Registration activities. Birth Certificate is a Civil Registration Deed as a result of recording the birth event of a baby whose birth is reported to be registered on the Family Card and given a Population Identification Number (NIK) as a basis for obtaining other community services. From the total number of integrated birth certificate reporting for the 2018 Population Administration Information System (SIAK) totaling 570,637 there were 503,946 reported late and only 66,691 were reported publicly. Clustering is a method used to classify data that is similar to others in one group or similar data to other groups. K-Nearest Neighbor is a method for classifying objects based on learning data that is the closest distance to the test data. k-means is a method used to divide a number of objects into groups based on existing categories by looking at the midpoint. In data mining preprocesses, data is cleaned by filling in the blank data with the most dominating data, and selecting attributes using the information gain method. Based on the k-nearest neighbor method to predict delays in reporting and the k-means method to classify priority areas of service with 10,000 birth certificate data on birth certificates in 2019 that have good enough performance to produce predictions with an accuracy of 74.00% and with K = 2 on k-means produces a index davies bouldin of 1,179.


Sign in / Sign up

Export Citation Format

Share Document