Action Recognition Using Motion Primitives and Probabilistic Edit Distance

Author(s):  
P. Fihl ◽  
M. B. Holte ◽  
T. B. Moeslund ◽  
L. Reng



2011 ◽  
Vol 186 ◽  
pp. 261-265
Author(s):  
He Jin Yuan ◽  
Cui Ru Wang

A novel human action recognition algorithm based on edit distance is proposed in this paper. In the method, the mesh feature of each image in human action sequence is firstly calculated; then the feature vectors are quantized through a rival penalized competitive neural network; and through this processing, the time-sequential image sequences are converted into symbolic sequences. For human action recognition, the observed action is firstly vector quantized with the former competitive neural network; then the normalized edit distances to the training samples are calculated and the action which best matches the observed sequence is chosen as the final category. The experiments on Weizmann dataset demonstrate that our method is effective for human action recognition. The average recognition accuracy can reach above 94%.



2013 ◽  
Vol 18 (2-3) ◽  
pp. 49-60 ◽  
Author(s):  
Damian Dudzńiski ◽  
Tomasz Kryjak ◽  
Zbigniew Mikrut

Abstract In this paper a human action recognition algorithm, which uses background generation with shadow elimination, silhouette description based on simple geometrical features and a finite state machine for recognizing particular actions is described. The performed tests indicate that this approach obtains a 81 % correct recognition rate allowing real-time image processing of a 360 X 288 video stream.



2018 ◽  
Vol 6 (10) ◽  
pp. 323-328
Author(s):  
K.Kiruba . ◽  
D. Shiloah Elizabeth ◽  
C Sunil Retmin Raj


2014 ◽  
Author(s):  
Ryan Cotterell ◽  
Nanyun Peng ◽  
Jason Eisner
Keyword(s):  


2019 ◽  
Author(s):  
Giacomo De Rossi ◽  
◽  
Nicola Piccinelli ◽  
Francesco Setti ◽  
Riccardo Muradore ◽  
...  






Sign in / Sign up

Export Citation Format

Share Document