action sequence
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 81)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christoph F. Geissler ◽  
Christian Frings ◽  
Birte Moeller

AbstractExecution of two independent actions in quick succession results in transient binding of these two actions. Subsequent repetition of any of these actions automatically retrieves the other. This process is probably fundamental for developing complex action sequences. However, rigid bindings between two actions are not always adaptive. Sometimes, it is necessary to repeat only one of the two previously executed actions. In such situations, stored action sequences must be disassembled, for the sake of flexibility. Exact mechanisms that allow for such an active unbinding of actions remain largely unknown, but it stands to reason, that some form of prefrontal executive control is necessary. Building on prior neuronal research that explored other forms of binding (e.g. between distractors and responses and abstract representations and responses), we explored middle and superior frontal correlates of -response binding in a sequential classification task with functional near-infrared spectroscopy. We found that anterior dorsolateral prefrontal cortex activity varied as a function of response–repetition condition. Activity in the right anterior dorsolateral prefrontal cortex correlated with changes in reaction times due to response–response binding. Our results indicate that the right anterior dorsolateral prefrontal cortex dismantles bindings between consecutive actions, whenever such bindings interfere with current action goals.


2021 ◽  
Author(s):  
Maria Cecilia Martinez ◽  
Camila Lidia Zold ◽  
Mario Gustavo Murer ◽  
Mariano Andrés Belluscio

The automatic initiation of actions can be highly functional. But occasionally these actions cannot be withheld and are released at inappropriate times, impulsively. Striatal activity has been shown to participate in the timing of action sequence initiation and it has been linked to impulsivity. Using a self-initiated task, we trained adult rats to withhold a rewarded action sequence until a waiting time interval has elapsed. By analyzing neuronal activity we show that the striatal response preceding the initiation of the learned sequence is strongly modulated by the time subjects wait before eliciting the sequence. Interestingly, the modulation is steeper in adolescent rats, which show a strong prevalence of impulsive responses compared to adults. We hypothesize this anticipatory striatal activity reflects the animals' subjective reward expectation, based on the elapsed waiting time, while its steeper waiting modulation in adolescence reflects age-related differences in temporal discounting, internal urgency states or explore-exploit balance.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yujian Jiang ◽  
Xue Yang ◽  
Jingyu Liu ◽  
Junming Zhang

In skeleton-based human action recognition methods, human behaviours can be analysed through temporal and spatial changes in the human skeleton. Skeletons are not limited by clothing changes, lighting conditions, or complex backgrounds. This recognition method is robust and has aroused great interest; however, many existing studies used deep-layer networks with large numbers of required parameters to improve the model performance and thus lost the advantage of less computation of skeleton data. It is difficult to deploy previously established models to real-life applications based on low-cost embedded devices. To obtain a model with fewer parameters and a higher accuracy, this study designed a lightweight frame-level joints adaptive graph convolutional network (FLAGCN) model to solve skeleton-based action recognition tasks. Compared with the classical 2s-AGCN model, the new model obtained a higher precision with 1/8 of the parameters and 1/9 of the floating-point operations (FLOPs). Our proposed network characterises three main improvements. First, a previous feature-fusion method replaces the multistream network and reduces the number of required parameters. Second, at the spatial level, two kinds of graph convolution methods capture different aspects of human action information. A frame-level graph convolution constructs a human topological structure for each data frame, whereas an adjacency graph convolution captures the characteristics of the adjacent joints. Third, the model proposed in this study hierarchically extracts different levels of action sequence features, making the model clear and easy to understand; further, it reduces the depth of the model and the number of parameters. A large number of experiments on the NTU RGB + D 60 and 120 data sets show that this method has the advantages of few required parameters, low computational costs, and fast speeds. It also has a simple structure and training process that make it easy to deploy in real-time recognition systems based on low-cost embedded devices.


2021 ◽  
Author(s):  
Tong Zhao ◽  
Bo Ni ◽  
Wenhao Yu ◽  
Zhichun Guo ◽  
Neil Shah ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. J. Rybicki ◽  
J. M. Galea ◽  
B. A. Schuster ◽  
C. Hiles ◽  
C. Fabian ◽  
...  

AbstractAtypical motor learning has been suggested to underpin the development of motoric challenges (e.g., handwriting difficulties) in autism. Bayesian accounts of autistic cognition propose a mechanistic explanation for differences in the learning process in autism. Specifically, that autistic individuals overweight incoming, at the expense of prior, information and are thus less likely to (a) build stable expectations of upcoming events and (b) react to statistically surprising events. Although Bayesian accounts have been suggested to explain differences in learning across a range of domains, to date, such accounts have not been extended to motor learning. 28 autistic and 35 non-autistic controls (IQ > 70) completed a computerised task in which they learned sequences of actions. On occasional “surprising” trials, an expected action had to be replaced with an unexpected action. Sequence learning was indexed as the reaction time difference between blocks which featured a predictable sequence and those that did not. Surprise-related slowing was indexed as the reaction time difference between surprising and unsurprising trials. No differences in sequence-learning or surprise-related slowing were observed between the groups. Bayesian statistics provided anecdotal to moderate evidence to support the conclusion that sequence learning and surprise-related slowing were comparable between the two groups. We conclude that individuals with autism do not show atypicalities in response to surprising events in the context of motor sequence-learning. These data demand careful consideration of the way in which Bayesian accounts of autism can (and cannot) be extended to the domain of motor learning.


Author(s):  
Aliki Papa ◽  
Mioara Cristea ◽  
Nicola McGuigan ◽  
Monica Tamariz

AbstractHuman culture is the result of a unique cumulative evolutionary process. Despite the importance of culture for our species the social transmission mechanisms underlying this process are still not fully understood. In particular, the role of language—another unique human behaviour—in social transmission is under-explored. In this first direct, systematic comparison of demonstration vs. language-based social learning, we ran transmission chains of participants (6- to 8-year-old children and adults from Cyprus) who attempted to extract a reward from a puzzle box after either watching a model demonstrate an action sequence or after listening to verbal instructions describing the action sequence. The initial seeded sequences included causally relevant and irrelevant actions allowing us to measure transmission fidelity and the accumulation of beneficial modifications through the lens of a subtractive ratchet effect. Overall, we found that, compared to demonstration, verbal instruction specifically enhanced the faithful transmission of causally irrelevant actions (overimitation) in children, but not in adults. Cumulative cultural evolution requires the faithful transmission of sophisticated, complex behaviour whose function may not be obvious. This indicates that, by supporting the retention of actions that appear to lack a causal function specifically by children, language may play a supportive role in cumulative cultural evolution.


Author(s):  
Can Xu ◽  
Wanzhong Zhao ◽  
Jingqiang Liu ◽  
Feng Chen

To improve the agility and efficiency of the highway decision-making system and overcome the local optimal dilemma of the existing safety field, this paper builds an improved safety field to reflect the advantage of the reachable states and the learning process is further employed to make the decision long-term optimal. Firstly, the improved safety field is prepared by the kinematic model-based prediction of surrounding vehicles and the boundary is determined elaborately to ensure real-time performance. Then, the field is constructed by three individual fields. One is the kinematic field, which is built based the safe-distance model to measure the colliding risk of both moving or no-moving objects accurately. Another is the road field that reflects the lane-marker constraint. The last is the efficiency field, which is introduced creatively to improve efficiency. Furthermore, the learning algorithm is adopted to learn the long-term optimal state-action sequence in the safety field. Finally, the simulations are conducted in Prescan platform to validate the feasibility of the improved safety field in complex scenarios. The results show that the proposed decision algorithm can always drive autonomous vehicle to the state with a long-term optimal payoff and can improve the overall performance compared to the existing pure safety field and the interaction-aware method.


2021 ◽  
Author(s):  
Alicia J. Rybicki ◽  
J. M. Galea ◽  
Bianca Schuster ◽  
C. Hiles ◽  
C. Fabian ◽  
...  

Abstract Background. Atypical motor learning has been suggested to underpin the development of motoric challenges (e.g., handwriting difficulties) in autism. Bayesian accounts of autistic cognition propose a mechanistic explanation for differences in the learning process in autism. Specifically, that autistic individuals overweight incoming, at the expense of prior, information and are thus less likely to a) build stable expectations of upcoming events and b) react to statistically surprising events. Although Bayesian accounts have been suggested to explain differences in learning across a range of domains, to date, such accounts have not been extended to motor learning.Methods. 28 autistic and 35 non-autistic controls (IQ > 70) completed a computerised task in which they learned sequences of actions. On occasional “surprising” trials, an expected action had to be replaced with an unexpected action. Sequence learning was indexed as the reaction time difference between blocks which featured a predictable sequence and those that did not. Surprise-related slowing was indexed as the reaction time difference between surprising and unsurprising trials.Results. No differences in sequence-learning or surprise-related slowing were observed between the groups. Bayesian statistics provided anecdotal to moderate evidence to support the conclusion that sequence learning and surprise-related slowing were comparable between the two groups. Conclusions. We conclude that individuals with autism do not show atypicalities in response to surprising events in the context of motor sequence-learning. These data demand careful consideration of the way in which Bayesian accounts of autism can (and cannot) be extended to the domain of motor learning.


2021 ◽  
Vol 7 (5) ◽  
pp. 1160-1169
Author(s):  
Jin Zhang ◽  
Xin Li

In order to solve the problem that the current key dance motion contour capture algorithm cannot effectively capture the concave part of the key dance motion contour, which leads to large contour capture error and long response time, a computer-aided key dance motion contour capture algorithm is proposed. The action sequence without background is obtained from the dance video, and the action sequence is optimized to reduce the interference of contour capture. Algorithm tracks the posture change of the object in the dance action sequence, determines the contour capture area, and completes the contour capture of the dance key action. Experimental results show that the proposed method can effectively improve the capture accuracy and shorten the response time.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256614
Author(s):  
Hanna Schleihauf ◽  
Stefanie Hoehl

Children imitate actions that are perceivably unnecessary to achieve the instrumental goal of an action sequence, a behavior termed over-imitation. It is debated whether this behavior is based on the motivation to follow behavioral norms and affiliate with the model or whether it can be interpreted in terms of a behavioral heuristic to copy observed intentional actions without questioning the purpose of each action step. To resolve this question, we tested whether preschool-aged children (N = 89) over-imitate a prosocial model, a helper in a prior third-party moral transgression, but refuse to over-imitate an antisocial model, the perpetrator of the moral transgression. After first observing an inefficient way to extract a reward from a puzzle box from either a perpetrator or a helper, children over-imitated the perpetrator to the same degree as they over-imitated the helper. In a second phase, children were then presented the efficient solution by the respective other model, i.e. the helper or the perpetrator. Over-imitation rates then dropped in both conditions, but remained significantly higher than in a baseline condition only when children had observed the prosocial model demonstrate the inefficient action sequence and the perpetrator performed the efficient solution. In contrast, over-imitation dropped to baseline level when the perpetrator had modelled the inefficient actions and the prosocial model subsequently showed children the efficient solution. In line with a dual-process account of over-imitation, results speak to a strong initial tendency to imitate perceivably irrelevant actions regardless of the model. Imitation behavior is then adjusted according to social motivations after deliberate consideration of different options to attain the goal.


Sign in / Sign up

Export Citation Format

Share Document