Multi-dimensional Sequential Pattern Mining Based on Concept Lattice

Author(s):  
Yang Jin ◽  
Wanli Zuo
2011 ◽  
Vol 109 ◽  
pp. 729-733
Author(s):  
Jiang Yin ◽  
Yun Li ◽  
Cen Cheng Shen ◽  
Bo Liu

Multi-Relational Sequential mining is one of the areas of data mining that rapidly developed in recent years. However, the performance issues of traditional mining methods are not ideal. To effectively mining the pattern, we proposed an algorithm based on Iceberg concept lattice, adopting optimization methods of partition and merger to just mining the frequent sequences. Experimental results show this algorithm effectively reduced the time complexity of multi-relational sequential pattern mining.


Author(s):  
KAMRAN SARTIPI ◽  
HOSSEIN SAFYALLAH

Software system analysis for identifying software functionality in source code remains a major problem in the reverse engineering literature. The early approaches for extracting software functionality mainly relied on static properties of software system. However, the static approaches by nature suffer from the lack of semantic and hence are not appropriate for this task. This paper presents a novel technique for dynamic analysis of software systems to identify the implementation of certain software functionality known as software features. In the proposed approach, a specific feature is shared by a number of task scenarios that are applied on the software system to generate execution traces. The application of a sequential pattern mining technique on the generated execution traces allows us to extract execution patterns that reveal the specific feature functionality. In a further step, the extracted execution patterns are distributed over a concept lattice to separate feature-specific group of functions from commonly used group of functions. The use of lattice also allows for identifying a family of closely related features in the source code. Moreover, in this work we provide a set of metrics for evaluating the structural merits of the software system such as component cohesion and functional scattering. We have implemented a prototype toolkit and experimented with two case studies Xfig drawing tool and Pine email client with very promising results.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1525
Author(s):  
Felipe Vieira ◽  
Cristian Cechinel ◽  
Vinicius Ramos ◽  
Fabián Riquelme ◽  
Rene Noel ◽  
...  

Communicating in social and public environments are considered professional skills that can strongly influence career development. Therefore, it is important to proper train and evaluate students in this kind of abilities so that they can better interact in their professional relationships, during the resolution of problems, negotiations and conflict management. This is a complex problem as it involves corporal analysis and the assessment of aspects that until recently were almost impossible to quantitatively measure. Nowadays, a number of new technologies and sensors have being developed for the capture of different kinds of contextual and personal information, but these technologies were not yet fully integrated inside learning settings. In this context, this paper presents a framework to facilitate the analysis and detection of patterns of students in oral presentations. Four steps are proposed for the given framework: Data collection, Statistical Analysis, Clustering, and Sequential Pattern Mining. Data Collection step is responsible for the collection of students interactions during presentations and the arrangement of data for further analysis. Statistical Analysis provides a general understanding of the data collected by showing the differences and similarities of the presentations along the semester. The Clustering stage segments students into groups according to well-defined attributes helping to observe different corporal patterns of the students. Finally, Sequential Pattern Mining step complements the previous stages allowing the identification of sequential patterns of postures in the different groups. The framework was tested in a case study with data collected from 222 freshman students of Computer Engineering (CE) course at three different times during two different years. The analysis made it possible to segment the presenters into three distinct groups according to their corporal postures. The statistical analysis helped to assess how the postures of the students evolved throughout each year. The sequential pattern mining provided a complementary perspective for data evaluation and helped to observe the most frequent postural sequences of the students. Results show the framework could be used as a guidance to provide students automated feedback throughout their presentations and can serve as background information for future comparisons of students presentations from different undergraduate courses.


2021 ◽  
pp. 1-15
Author(s):  
Youxi Wu ◽  
Yuehua Wang ◽  
Yan Li ◽  
Xingquan Zhu ◽  
Xindong Wu

Sign in / Sign up

Export Citation Format

Share Document