nuclear localization signal
Recently Published Documents


TOTAL DOCUMENTS

715
(FIVE YEARS 63)

H-INDEX

73
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Tong Zhou ◽  
Dengjian Fan ◽  
Mingshu Wang ◽  
Anchun Cheng ◽  
Ying Wu ◽  
...  

Duck plague caused by the duck plague virus (DPV) is an infectious disease that seriously harms the waterfowl breeding industry. The VP16 protein of α herpesvirus can bind to specific cis-acting elements upstream of the promoter of the immediate-early (IE, α) gene to promote the transcription of the IE gene, so it is also called the trans-inducer of IE gene (α-TIF). However, no studies on DPV α-TIF have been reported. This study investigated the DPV pUL48, a homolog of HSV-1 VP16, transcriptional activation region, target sequence, and viral protein affecting its transcriptional activation using a dual-luciferase reporter gene detection system, and pUL48 was identified as the α-TIF of DPV. (1) The regulation of pUL48 on DPV different gene promoters showed that pUL48 could activate all the promoters of IE genes (ICP4, ICP22, and ICP27) but not the promoters of early and late genes. (2) The activity of pUL48 to ICP4 and ICP22 promoters with different upstream lengths showed that pUL48 activated ICP4 and ICP22 promoters by acting on TAATGA (T) TAT element upstream of ICP4 promoter and TAATTATAT element upstream of ICP22 promoter, respectively. (3) Transcriptional activation of IE gene by truncated proteins of different lengths at the N-terminal of pUL48 was detected. The results showed that the transcriptional activation domain of pUL48 was amino acids 1–60 at the N-terminal, and amino acids 1–20 was its core region. In addition, it was found that pUL14, pUL46, and pUL47 significantly promoted the transcriptional activation of pUL48. The effects of loss of pUL47 and its nuclear localization signal on the nuclear entry and transcriptional activation function of pUL48 were further examined. The results showed that pUL47 could promote the nuclear entry of pUL48 through its nuclear localization signal at positions 40–50 and 768–777 amino acids, thus, enhancing the transcriptional activation function of pUL48 and synergistic promotion of viral gene transcription.


2021 ◽  
Vol 15 ◽  
Author(s):  
Antonietta Notaro ◽  
Antonella Messina ◽  
Vincenzo La Bella

Mutations in Fused-in-Sarcoma (FUS) gene involving the nuclear localization signal (NLS) domain lead to juvenile-onset Amyotrophic Lateral Sclerosis (ALS). The mutant protein mislocalizes to the cytoplasm, incorporating it into Stress Granules (SG). Whether SGs are the first step to the formation of stable FUS-containing aggregates is still unclear. In this work, we used acute and chronic stress paradigms to study the SG dynamics in a human SH-SY5Y neuroblastoma cell line carrying a deletion of the NLS domain of the FUS protein (homozygous: ΔNLS–/–; heterozygous: ΔNLS+/–). Wild-type (WT) cells served as controls. We evaluated the subcellular localization of the mutant protein through immunoblot and immunofluorescence, in basal conditions and after acute stress and chronic stress with sodium arsenite (NaAsO2). Cells were monitored for up to 24 h after rescue. FUS was expressed in both nucleus and cytoplasm in the ΔNLS+/– cells, whereas it was primarily cytoplasmic in the ΔNLS–/–. Acute NaAsO2 exposure induced SGs: at rescue,>90% of ΔNLS cells showed abundant FUS-containing if compared to less than 5% of the WT cells. The proportion of FUS-positive SGs remained 15–20% at 24 h in mutant cells. Cycloheximide did not abolish the long-lasting SGs in mutant cells. Chronic exposure to NaAsO2 did not induce significant SGs formation. A wealth of research has demonstrated that ALS-associated FUS mutations at the C-terminus facilitate the incorporation of the mutant protein into SGs. We have shown here that mutant FUS-containing SGs tend to fail to dissolve after stress, facilitating a liquid-to-solid phase transition. The FUS-containing inclusions seen in the dying motor neurons might therefore directly derive from SGs. This might represent an attractive target for future innovative therapies.


2021 ◽  
Author(s):  
Piotr Grabarczyk ◽  
Martin Delin ◽  
Dorota Rogińska ◽  
Lukas Schulig ◽  
Hannes Forkel ◽  
...  

The Krüppel-like transcription factor BCL11B is characterized by wide tissue distribution and crucial functions in key developmental and cellular processes and various pathologies including cancer or HIV infection. Although basics of BCL11B activity and relevant interactions with other proteins were uncovered, how this exclusively nuclear protein localizes to its compartment remained unclear. Here, we demonstrate that unlike other KLFs, BCL11B does not require the C-terminal DNA-binding domain to pass through the nuclear envelope but encodes an independent, previously unidentified nuclear localization signal (NLS) which is located distantly from the zinc finger domains and fulfills the essential criteria of an autonomous NLS. First, it can redirect a heterologous cytoplasmic protein to the nucleus. Second, its mutations cause aberrant localization of the protein of origin. Finally, we provide experimental and in silico evidences of the direct interaction with importin alpha. The relative conservation of this motif allows formulating a consensus sequence (K/R)K-X13-14-KR+K++ which can be found in all BCL11B orthologues among vertebrates and in the closely related protein BCL11A.


2021 ◽  
Author(s):  
Andrea B. Eberle ◽  
Karin Schranz ◽  
Sofia Nasif ◽  
Lena Grollmus ◽  
Oliver Muehlemann

The RNA helicase UPF1 is best known for its key role in mRNA surveillance but has been implicated in additional cellular processes both in the nucleus and in the cytoplasm. In human cells, the vast majority of UPF1 resides in the cytoplasm and only small amounts can be detected in the nucleus at steady state. It was previously shown that its export from the nucleus to the cytoplasm is Crm1-dependent, yet neither the nuclear export signal (NES) nor the nuclear localization signal (NLS) has been identified. Here, we provide evidence for a noncanonical NLS in UPF1, map the NES to amino acids 89-105 and show that L103 and F105 are essential for UPF1's export to the cytoplasm. Examination of additional UPF1 mutants revealed that a functional helicase domain but not the association with RNA is crucial for the shuttling capacity of UPF1.


2021 ◽  
Author(s):  
Chris Y. Cheung ◽  
Ting-Ting Huang ◽  
Ning Chow ◽  
Shuqi Zhang ◽  
Yanxiang Zhao ◽  
...  

NFAT5 is the only known mammalian tonicity-responsive transcription factor functionally implicated in diverse physiological and pathological processes. NFAT5 activity is tightly regulated by extracellular tonicity but the underlying mechanisms remain elusive. We demonstrated that NFAT5 enters the nucleus via the nuclear pore complex. We also found that NFAT5 utilizes a non-canonical nuclear localization signal (NFAT5-NLS) for nuclear imports. siRNA screening revealed that karyopherin beta-1 (KPNB1) drives nuclear import of NFAT5 via directly interacting with NFAT5-NLS. Proteomics analysis and siRNA screening further revealed that nuclear export of NFAT5 under hypotonicity is mediated by Exportin-T, and that it requires RuvB-Like AAA type ATPase 2 (RUVBL2) as an indispensable chaperone. Our findings have identified KPNB1 and RUVBL2 as key molecules responsible for the unconventional tonicity-regulated nucleocytoplasmic shuttling of NFAT5. These findings offer an opportunity for developing novel NFAT5 targeting strategies that are potentially useful for the treatment of diseases associated with NFAT5 dysregulation.


2021 ◽  
Vol 22 (14) ◽  
pp. 7428
Author(s):  
Emanuela Stampone ◽  
Debora Bencivenga ◽  
Clementina Barone ◽  
Marilena Di Finizio ◽  
Fulvio Della Ragione ◽  
...  

p57Kip2 protein is a member of the CIP/Kip family, mainly localized in the nucleus where it exerts its Cyclin/CDKs inhibitory function. In addition, the protein plays key roles in embryogenesis, differentiation, and carcinogenesis depending on its cellular localization and interactors. Mutations of CDKN1C, the gene encoding human p57Kip2, result in the development of different genetic diseases, including Beckwith–Wiedemann, IMAGe and Silver–Russell syndromes. We investigated a specific Beckwith–Wiedemann associated CDKN1C change (c.946 C>T) that results in the substitution of the C-terminal amino acid (arginine 316) with a tryptophan (R316W-p57Kip2). We found a clear redistribution of R316W-p57Kip2, in that while the wild-type p57Kip2 mostly occurs in the nucleus, the mutant form is also distributed in the cytoplasm. Transfection of two expression constructs encoding the p57Kip2 N- and C-terminal domain, respectively, allows the mapping of the nuclear localization signal(s) (NLSs) between residues 220–316. Moreover, by removing the basic RKRLR sequence at the protein C-terminus (from 312 to 316 residue), p57Kip2 was confined in the cytosol, implying that this sequence is absolutely required for nuclear entry. In conclusion, we identified an unreported p57Kip2 NLS and suggest that its absence or mutation might be of relevance in CDKN1C-associated human diseases determining significant changes of p57Kip2 localization/regulatory roles.


Sign in / Sign up

Export Citation Format

Share Document