scholarly journals Agent-Based Analysis and Support for Incident Management

Author(s):  
Mark Hoogendoorn ◽  
Catholijn M. Jonker ◽  
Jan Treur ◽  
Marian Verhaegh
2011 ◽  
Vol 59 (1) ◽  
pp. 167-189 ◽  
Author(s):  
Richard J. Dawson ◽  
Roger Peppe ◽  
Miao Wang

2009 ◽  
Vol 47 (8) ◽  
pp. 1163-1174 ◽  
Author(s):  
Mark Hoogendoorn ◽  
Catholijn M. Jonker ◽  
Jan Treur ◽  
Marian Verhaegh

2020 ◽  
Vol 20 (8) ◽  
pp. 2281-2305
Author(s):  
Thomas O'Shea ◽  
Paul Bates ◽  
Jeffrey Neal

Abstract. This paper uses a coupled hydrodynamic agent-based model (HABM) to investigate the effect of direct or indirect warnings in flood incident response. This model uses the LISFLOOD-FP hydrodynamic model and the NetLogo agent-based framework and is applied to the 2005 flood event in Carlisle, UK. The hydrodynamic model provides a realistic simulation of detailed flood dynamics through the event, whilst the agent-based model component enables simulation and analysis of the complex, in-event social response. NetLogo enables alternative probabilistic daily routine and agent choice scenarios for the individuals of Carlisle to be simulated in a coupled fashion with the flood inundation. Specifically, experiments are conducted using a novel “enhanced social modelling component” based on the Bass diffusion model. From the analysis of these simulations, management stress points (predictable or otherwise) can be presented to those responsible for hazard management and post-event recovery. The results within this paper suggest that these stress points can be present, or amplified, due to a lack of preparedness or a lack of phased evacuation measures. Furthermore, the methods outlined here have the potential for application elsewhere to reduce the complexity and improve the effectiveness of flood incident management. The paper demonstrates the influence that emergent properties have on systematic vulnerability and risk from natural hazards in coupled socio-environmental systems.


Author(s):  
Thomas O'Shea ◽  
Paul Bates ◽  
Jeffrey Neal

Abstract. This paper presents a new flood risk behaviour model developed using a coupled Hydrodynamic Agent-Based Model (HABM). This model uses the LISFLOOD-FP Hydrodynamic Model and the NetLogo (NL) agent-based framework and is applied to the 2005 flood event in Carlisle, UK. The hydrodynamic model provides a realistic simulation of detailed flood dynamics through the event whilst the agent-based model component enables simulation and analysis of the complex, in-event social response. NetLogo enables alternative probabilistic daily routine and agent choice scenarios for the individuals of Carlisle to be simulated in a coupled fashion with the flood inundation. Experiments are also conducted using a novel, enhanced social modelling component, comprised of the Bass Diffusion Model, to investigate the effect of direct or indirect warnings in flood incident response. From the analysis of these coupled simulations, management stress points, predictable or otherwise, can be presented to those responsible for hazard management and post-event recovery. The results within this paper suggest that these stress points can be present, or amplified, by a lack of preparedness or a lack of phased evacuation measures. Furthermore, the methods here outlined have the potential for application elsewhere to reduce the complexity and improve the effectiveness of flood incident management. The paper demonstrates the influence that emergent properties have on systematic vulnerability and risk from natural hazards in coupled socio-environmental systems.


Author(s):  
Jorge Perdigao

In 1955, Buonocore introduced the etching of enamel with phosphoric acid. Bonding to enamel was created by mechanical interlocking of resin tags with enamel prisms. Enamel is an inert tissue whose main component is hydroxyapatite (98% by weight). Conversely, dentin is a wet living tissue crossed by tubules containing cellular extensions of the dental pulp. Dentin consists of 18% of organic material, primarily collagen. Several generations of dentin bonding systems (DBS) have been studied in the last 20 years. The dentin bond strengths associated with these DBS have been constantly lower than the enamel bond strengths. Recently, a new generation of DBS has been described. They are applied in three steps: an acid agent on enamel and dentin (total etch technique), two mixed primers and a bonding agent based on a methacrylate resin. They are supposed to bond composite resin to wet dentin through dentin organic component, forming a peculiar blended structure that is part tooth and part resin: the hybrid layer.


2008 ◽  
Author(s):  
Sato Hiroshi ◽  
Kubo Masao ◽  
Namatame Akira
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document