Numerical integration of the Euler-equations for three-dimensional unsteady flows

Author(s):  
K. Roesner
1993 ◽  
Vol 115 (4) ◽  
pp. 781-790 ◽  
Author(s):  
G. A. Gerolymos

In the present work an algorithm for the numerical integration of the three-dimensional unsteady Euler equations in vibrating transonic compressor cascades is described. The equations are discretized in finite-volume formulation in a mobile grid using isoparametric brick elements. They are integrated in time using Runge-Kutta schemes. A thorough discussion of the boundary conditions used and of their influence on results is undertaken. The influence of grid refinement on computational results is examined. Unsteady convergence of results is discussed.


1993 ◽  
Vol 115 (4) ◽  
pp. 800-809 ◽  
Author(s):  
K. C. Hall ◽  
C. B. Lorence

An efficient three-dimensional Euler analysis of unsteady flows in turbomachinery is presented. The unsteady flow is modeled as the sum of a steady or mean flow field plus a harmonically varying small perturbation flow. The linearized Euler equations, which describe the small perturbation unsteady flow, are found to be linear, variable coefficient differential equations whose coefficients depend on the mean flow. A pseudo-time time-marching finite-volume Lax-Wendroff scheme is used to discretize and solve the linearized equations for the unknown perturbation flow quantities. Local time stepping and multiple-grid acceleration techniques are used to speed convergence. For unsteady flow problems involving blade motion, a harmonically deforming computational grid, which conforms to the motion of the vibrating blades, is used to eliminate large error-producing extrapolation terms that would otherwise appear in the airfoil surface boundary conditions and in the evaluation of the unsteady surface pressure. Results are presented for both linear and annular cascade geometries, and for the latter, both rotating and nonrotating blade rows.


Author(s):  
Kenneth C. Hall ◽  
Christopher B. Lorence

An efficient three-dimensional Euler analysis of unsteady flows in turbomachinery is presented. The unsteady flow is modelled as the sum of a steady or mean flow field plus a harmonically varying small perturbation flow. The linearized Euler equations, which describe the small perturbation unsteady flow, are found to be linear, variable coefficient differential equations whose coefficients depend on the mean flow. A pseudo-time time-marching finite-volume Lax-Wendroff scheme is used to discretize and solve the linearized equations for the unknown perturbation flow quantities. Local time stepping and multiple-grid acceleration techniques are used to speed convergence. For unsteady flow problems involving blade motion, a harmonically deforming computational grid which conforms to the motion of the vibrating blades is used to eliminate large error-producing extrapolation terms that would otherwise appear in the airfoil surface boundary conditions and in the evaluation of the unsteady surface pressure. Results are presented for both linear and annular cascade geometries, and for the latter, both rotating and nonrotating blade rows.


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


1989 ◽  
Author(s):  
N. KROLL ◽  
C. ROSSOW ◽  
S. SCHERR ◽  
J. SCHOENE ◽  
G. WICHMANN

2002 ◽  
Vol 124 (4) ◽  
pp. 988-993 ◽  
Author(s):  
V. Esfahanian ◽  
M. Behbahani-nejad

An approach to developing a general technique for constructing reduced-order models of unsteady flows about three-dimensional complex geometries is presented. The boundary element method along with the potential flow is used to analyze unsteady flows over two-dimensional airfoils, three-dimensional wings, and wing-body configurations. Eigenanalysis of unsteady flows over a NACA 0012 airfoil, a three-dimensional wing with the NACA 0012 section and a wing-body configuration is performed in time domain based on the unsteady boundary element formulation. Reduced-order models are constructed with and without the static correction. The numerical results demonstrate the accuracy and efficiency of the present method in reduced-order modeling of unsteady flows over complex configurations.


Sign in / Sign up

Export Citation Format

Share Document