Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education
Latest Publications


TOTAL DOCUMENTS

84
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791878972

Author(s):  
A. Guinzburg ◽  
C. E. Brennen ◽  
A. J. Acosta ◽  
T. K. Caughey

The role played by fluid forces in determining the rotordynamic stability of a centrifugal pump is gaining increasing attention. The present research investigates the contributions to the rotordynamic forces from the discharge-to-suction leakage flows between the front shroud of the rotating impeller and the stationary pump casing. In particular, the dependency of the rotordynamic characteristics of leakage flows on the swirl at the inlet to the leakage path was examined. An inlet guide vane was designed for the experiment so that swirl could be introduced at the leakage flow inlet. The data demonstrates substantial rotordynamic effects and a destabilizing tangential force for small positive whirl ratios; this force decreased with increasing flow rate. The effect of swirl on the rotordynamic forces was found to be destabilizing.


Author(s):  
Eben C. Cobb ◽  
Tsu-Chien Cheu ◽  
Jay Hoffman

This paper presents a design methodology to determine the optimal circumferential placement of cylindrical probes upstream of a turbine stage for reduced excitation forces. The potential flow forcing function generated by the probes is characterized by means of a Fourier analysis. A finite difference formulation is used to evaluate the sensitivity of the forcing function to the probe positions. An optimization scheme, based on the linear programming method, uses the sensitivity analysis results to reposition the probes such that the Fourier amplitudes of critical excitation orders are reduced. The results for an example design situation are presented.


Author(s):  
V. Pavelic ◽  
R. S. Amano

In many applications the design operating range of the turbomachinery may be well above the rotor first critical speed which leads to the problem of insuring that the turbomachinery performs with a stable, low-level amplitude of vibration. Under certain conditions of high speed and loading the rotor system can start orbiting in its bearing at a rate which is less than the rotor angular speed, and this phenomena is commonly known as whirling or whipping action. This whipping action may produce additional undesirable dynamic loads on the overall flexible assembly and eventually destroy the rotor. Some of this action is also transient in nature. Whirling is a self-exited vibration caused mainly by the fluid bearings and by the internal friction damping of the rotor. To understand this occurrence, a general dynamic mathematical model was derived considering also the complete viscous characteristic of hydrodynamic journal bearings. The general equations of motions of the system are obtained from Lagrange’s equation of motion. The system kinetic, potential, and dissipation functions are determined based on the generalized coordinates of the system. The journal displacements are related to the overall dynamics of the rotor using deformable bearings. The loads acting at the journals of the shaft are integrated from the fluid film pressure distribution in the journal bearings using mobility method. A unique mathematical model is formulated and solved. This model includes the elastic and inertial properties of the flexible rotor, the elastic, damping and inertial properties of supports and the hydrodynamic characteristics of the journal bearings. The equations of motions result in a system of nonlinear second order differential equations which are solved by using finite difference method. The solution of the equations of motions is used to plot maps of motion of journal centers. A computer program was implemented to aid in the solution of the system of equations and to verify analytical model. The computer program used test data available in literature and the results were compared to be very good. The analytical model and results obtained in this study can be of great help to designers of high speed turbomachinery.


Author(s):  
S. Aksoy

A series of experiments were conducted to investigate the thermomechanical fatigue behavior of SiC(SCS-6)/Ti-6-4 composite. Three types of tests were conducted. In the first, specimens were subjected to load-controlled mechanical cycling under isothermal conditions. The other two types of test involved simultaneous cycling of load and temperature: in-phase and out-of-phase cycles. The effect of temperature cyclic ranges of 250°C to 528°C were evaluated for the out-of-phase (low temperature-high stress) conditions. A single temperature range of 250°C was employed for the in-phase (high temperature-high stress) condition. Fatigue-life diagrams were developed to evaluate the fatigue performance of the composite based on certain damage mechanism maps. In addition, micromechanical stresses in the fiber and matrix were computed using a generalized plane strain finite element analysis. The intention of this analytical effort was to provide the understanding of the fundamental mechanisms governing material behavior for guiding the development of life prediction methodology.


Author(s):  
Gregory H. Henderson ◽  
Sanford Fleeter

The fundamental gust modeling assumption is investigated by means of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady periodic flow field is generated by rotating rows of perforated plates and airfoil cascades. In this paper, the measured unsteady flow fields are compared to linear-theory gust requirements, with the resulting unsteady gust response of a downstream stator cascade correlated with linear theory predictions in an accompanying paper. The perforated-plate forcing functions closely resemble linear-theory forcing functions, with the static pressure fluctuations small and the periodic velocity vectors parallel to the downstream mean-relative flow angle over the entire periodic cycle. In contrast, the airfoil forcing functions exhibit characteristics far from linear-theory gusts, with the alignment of the velocity vectors and the static pressure fluctuation amplitudes dependent on the rotor-loading condition, rotor solidity and the inlet mean-relative flow angle. Thus, these unique data clearly show that airfoil wakes, both compressor and turbine, are not able to be modeled with the boundary conditions of current state-of-the-art linear unsteady aerodynamic theory.


Author(s):  
D. Jin ◽  
U. Haupt ◽  
H. Hasemann ◽  
M. Rautenberg

Centrifugal compressor surge at high rotational speed and reduced blade thickness can produce dangerous excitation effects which have numerous resulted in problems in the past. This paper presents an investigation of blade excitation during surge in a high performance single stage centrifugal compressor with various impeller and diffuser geometry. The blade vibration was measured using blade mounted strain gages. The flow characteristics during surge as the cause of blade excitation were simultaneously determined by fast response dynamic pressure transducers. The experiments have been performed using a radial and a backswept impeller, as well as a vanless and vaned diffusers. The rotational speed of the compressor was varied from 5,000 to 14,500 rpm. The characteristics of unsteady flow during surge, such as, the flow pattern of rotating stall and the non-periodic pressure fluctuation during surge were studied in detail. The experimental results demonstrated that, in addition to the excitation of rotating stall during surge, strong non-periodic pressure fluctuations at the beginning and the end of the surge induced dangerous blade excitations in all compressor configurations. The maximum strain values of blade vibration for all compressor versions at different rotational speeds of the compressor were measured to estimate the danger of blade excitation during surge. The results showed that the blade excitation during compressor surge with vaned diffusers is stronger than the excitation with a vanless diffuser and that the blade excitation with a radial impeller is stronger than the excitation with a backswept impeller.


Author(s):  
J. D. MacLeod ◽  
B. Drbanski

The Engine Laboratory of the National Research Council of Canada (NRCC), with the assistance of Standard Aero Ltd., has established a program for the evaluation of component deterioration on gas turbine engine performance. As part of this project, a study of the effects of turbine rebuild tolerances on overall engine performance was undertaken. This study investigated the range of performance changes that might be expected for simply disassembling and reassembling the turbine module of a gas turbine engine, and how these changes would influence the results of the component fault implantation program. To evaluate the effects of rebuilding the turbine on the performance of a single spool engine, such as Allison T56 turboprop engine, a series of three rebuilds were carried out. This study was performed in a similar way to a previous NRCC study on the effects of compressor rebuilding. While the compressor rebuild study had found performance changes in the order of 1% on various engine parameters, the effects of rebuilding the turbine have proven to be even more significant. Based on the results of the turbine rebuild study, new methods to improve the assurance of the best possible tolerances during the rebuild process are currently being addressed. This paper describes the project objectives, the experimental installation, and the results of the performance evaluations. Discussed are performance variations due to turbine rebuilds on engine performance characteristics. As the performance changes were significant, a rigorous measurement uncertainty analysis is included.


Author(s):  
George T. Flowers ◽  
Fang Sheng Wu

This study examines the influence of bearing clearance on the dynamical behavior of a rotating, flexible disk/shaft system. Most previous work in nonlinear rotordynamics has tended to concentrate separately on shaft vibration or on bladed disk vibration, neglecting the coupling dynamics between them. The current work examines the important rotordynamical behavior of coupled disk/shaft dynamics. A simplified nonlinear model is developed for lateral vibration of a rotor system with a bearing clearance nonlinearity. The steady-state dynamical behavior of this system is explored using numerical simulation and limit cycle analysis. It is demonstrated that bearing clearance effects can produce superharmonic vibration that may serve to excite high amplitude disk vibration. Such vibration could lead to significantly increased bearing loads and catastrophic failure of blades and disks. In addition, multi-valued responses and aperiodic behavior was observed.


Author(s):  
E. Loukis ◽  
K. Mathioudakis ◽  
K. Papailiou

A method enabling the automated diagnosis of Gas Turbine Compressor blade faults, based on the principles of statistical pattern recognition is initially presented. The decision making is based on the derivation of spectral patterns from dynamic measurements data and then the calculation of discriminants with respect to reference spectral patterns of the faults while it takes into account their statistical properties. A method of optimizing the selection of discriminants using dynamic measurements data is also presented. A few scalar discriminants are derived, in such a way that the maximum available discrimination potential is exploited. In this way the success rate of automated decision making is further improved, while the need for intuitive discriminant selection is eliminated. The effectiveness of the proposed methods is demonstrated by application to data coming from an Industrial Gas Turbine while extension to other aspects of Fault Diagnosis is discussed.


Author(s):  
Georg A. Gerolymos

In the present work an algorithm for the coupled aeromechanical computation of 3-D compressor cascades vibrating in a traveling-wave mode is presented and applied to the determination of aeroelastic stability of a transonic fan rotor. The initial vibratory modes are computed using a finite-element structural analysis code. The unsteady flowfield response to blade vibration is estimated by numerical integration of the 3-D unsteady Euler equations. Coupling relations are formulated in the frequency domain, using a mode-modification technique, based on modal projection. The vibratory mode is updated at the end of the aerodynamic simulation of each period, and the updated mode is used for the simulation of the next period. A number of results illustrate the method’s potential.


Sign in / Sign up

Export Citation Format

Share Document