On closure properties of context-free derivation complexity classes

Author(s):  
A. Ja. Dikovskii
2007 ◽  
Vol 18 (06) ◽  
pp. 1293-1302 ◽  
Author(s):  
MARTIN KUTRIB ◽  
ANDREAS MALCHER

We investigate the intersection of Church-Rosser languages and (strongly) context-free languages. The intersection is still a proper superset of the deterministic context-free languages as well as of their reversals, while its membership problem is solvable in linear time. For the problem whether a given Church-Rosser or context-free language belongs to the intersection we show completeness for the second level of the arithmetic hierarchy. The equivalence of Church-Rosser and context-free languages is Π1-complete. It is proved that all considered intersections are pairwise incomparable. Finally, closure properties under several operations are investigated.


2005 ◽  
Vol 200 (1) ◽  
pp. 1-34 ◽  
Author(s):  
Holger Spakowski ◽  
Mayur Thakur ◽  
Rahul Tripathi

2010 ◽  
Vol 10 (9&10) ◽  
pp. 747-770
Author(s):  
Abuzer Yakaryilmaz ◽  
A.C. Cem Say

The nondeterministic quantum finite automaton (NQFA) is the only known case where a one-way quantum finite automaton (QFA) model has been shown to be strictly superior in terms of language recognition power to its probabilistic counterpart. We give a characterization of the class of languages recognized by NQFAs, demonstrating that it is equal to the class of exclusive stochastic languages. We also characterize the class of languages that are recognized necessarily by two-sided error by QFAs. It is shown that these classes remain the same when the QFAs used in their definitions are replaced by several different model variants that have appeared in the literature. We prove several closure properties of the related classes. The ramifications of these results about classical and quantum sublogarithmic space complexity classes are examined.


2020 ◽  
Author(s):  
Aqilahfarhana Abdul Rahman ◽  
Wan Heng Fong ◽  
Nor Haniza Sarmin ◽  
Sherzod Turaev

2016 ◽  
Vol 27 (02) ◽  
pp. 187-214 ◽  
Author(s):  
Martin Kutrib ◽  
Andreas Malcher ◽  
Matthias Wendlandt

We consider the model of deterministic set automata which are basically deterministic finite automata equipped with a set as an additional storage medium. The basic operations on the set are the insertion of elements, the removing of elements, and the test whether an element is in the set. We investigate the computational power of deterministic set automata and compare the language class accepted with the context-free languages and classes of languages accepted by queue automata. As result the incomparability to all classes considered is obtained. Furthermore, we examine the closure properties under several operations. Then we show that deterministic set automata may be an interesting model from a practical point of view by proving that their regularity problem as well as the problems of emptiness, finiteness, infiniteness, and universality are decidable. Finally, the descriptional complexity of deterministic and nondeterministic set automata is investigated. A conversion procedure that turns a deterministic set automaton accepting a regular language into a deterministic finite automaton is developed which leads to a double exponential upper bound. This bound is proved to be tight in the order of magnitude by presenting also a double exponential lower bound. In contrast to these recursive bounds we obtain non-recursive trade-offs when nondeterministic set automata are considered.


2007 ◽  
Vol 18 (06) ◽  
pp. 1271-1282 ◽  
Author(s):  
ANDREAS KLEIN ◽  
MARTIN KUTRIB

We introduce a new type of finite copying parallel rewriting system, i. e., grammars with linked nonterminals, which extend the generative capacity of context-free grammars. They can be thought of as having sentential forms where some instances of a nonterminal may be linked. The context-free-like productions replace a nonterminal together with its connected instances. New links are only established between symbols of the derived subforms. A natural limitation is to bound the degree of synchronous rewriting. We present an infinite degree hierarchy of separated language families with the property that degree one characterizes the family of regular and degree two the family of context-free languages. Furthermore, the hierarchy is a refinement of the known hierarchy of finite copying rewriting systems. Several closure properties known from equivalent systems are summarized.


1973 ◽  
Vol 2 (18) ◽  
Author(s):  
Arto Salomaa

The notion of a K-iteration grammar, where K is a family of languages, provides a uniform framework for discussing the various language families obtained by context-free Lindenmayer systems. It is shown that the family of languages generated by K-iteration grammars possesses strong closure properties under the assumption that K itself has certain weak closure properties. Along these lines, the notion of a hyper-AFL is introduced and some open problems are posed.


Sign in / Sign up

Export Citation Format

Share Document