Exponential lower bounds for real-time branching programs

Author(s):  
K. Kriegel ◽  
S. Waack
2016 ◽  
Vol 57 ◽  
pp. 307-343 ◽  
Author(s):  
Nathan R. Sturtevant ◽  
Vadim Bulitko

Real-time agent-centered heuristic search is a well-studied problem where an agent that can only reason locally about the world must travel to a goal location using bounded computation and memory at each step. Many algorithms have been proposed for this problem and theoretical results have also been derived for the worst-case performance with simple examples demonstrating worst-case performance in practice. Lower bounds, however, have not been widely studied. In this paper we study best-case performance more generally and derive theoretical lower bounds for reaching the goal using LRTA*, a canonical example of a real-time agent-centered heuristic search algorithm. The results show that, given some reasonable restrictions on the state space and the heuristic function, the number of steps an LRTA*-like algorithm requires to reach the goal will grow asymptotically faster than the state space, resulting in ``scrubbing'' where the agent repeatedly visits the same state. We then show that while the asymptotic analysis does not hold for more complex real-time search algorithms, experimental results suggest that it is still descriptive of practical performance.


1994 ◽  
Vol 1 (46) ◽  
Author(s):  
Amos Beimel

The model of span programs is a linear algebraic model of computation. Lower bounds for span programs imply lower bounds for contact schemes, symmetric branching programs and for formula size. Monotone span programs correspond also to linear secret-sharing schemes. We present a new technique for proving lower bounds for monotone span programs. The main result proved here yields quadratic lower bounds for the size of monotone span programs, improving on the largest previously known bounds for explicit functions. The bound is asymptotically tight for the function corresponding to a class of 4-cliques.


Sign in / Sign up

Export Citation Format

Share Document