Satellite clusters for future gravity field missions

Author(s):  
Nico Sneeuw ◽  
Hanspeter Schaub
2019 ◽  
Vol 11 (1) ◽  
Author(s):  
M.A. Boyarchuk ◽  
I.G. Zhurkin ◽  
V.B. Nepoklonov

2019 ◽  
Vol 489 (1) ◽  
pp. 1368-1371
Author(s):  
E. I. Ryzhak ◽  
S. V. Sinyukhina
Keyword(s):  

2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Wutong Gao ◽  
Jianguo Yan ◽  
Weitong Jin ◽  
Chen Yang ◽  
Linzhi Meng ◽  
...  

2013 ◽  
Vol 833 ◽  
pp. 125-129
Author(s):  
Hao Zhang ◽  
Zhong Min Zhao ◽  
Long Zhang ◽  
Shuan Jie Wang

By introducing (CrO3+Al) high-energy thermit into (Ti+B4C) system and designing adiabatic temperature of reactive system as 3000°C,3200°C, 3400°C, 3600°C and 3800°C respectively, a series of solidified TiC-TiB2were prepared by combustion synthesis in ultrahigh gravity field with the acceleration 2000 g. XRD, FESEM and EDS results showed that the solidified TiCTiB2were composed of a number of TiB2primary platelets, irregular TiC secondary grains, and a few of isolated Al2O3inclusions and Cr-based alloy. Because of the enhanced Stokes flow in mixed melt with the increased adiabatic temperature, Al2O3droplets were promoted to float up and separate from TiC-TiB2-Me liquid while constitutional distribution became more and more uniform in TiC-TiB2-Me liquid, resulting in not only the sharply-reduced Al2O3inclusions in the solidified ceramic but also the refined microstructure and the improved homogeneity in the ceramic, and ultrafine-grained microstructure with a average thickness of TiB2platelets smaller than 1μm began to appear in near-full-density ceramic as the adiabatic temperature exceeded 3600°C, so the densification, fracture toughness and flexural strength of the ceramic were enhanced with the increased adiabatic temperature of the reactive system.


Sign in / Sign up

Export Citation Format

Share Document