LC-Learning: Phased Method for Average Reward Reinforcement Learning —Preliminary Results —

Author(s):  
Taro Konda ◽  
Shinjiro Tensyo ◽  
Tomohiro Yamaguchi
Author(s):  
Yoshihiro Ichikawa ◽  
◽  
Keiki Takadama

This paper proposes the reinforcement learning agent that estimates internal rewards using external rewards in order to avoid conflict in multi-step dilemma problem. Intensive simulation results have revealed that the agent succeeds in avoiding local convergence and obtains a behavior policy for reaching a higher reward by updating the Q-value using the value that is subtracted the average reward from an external reward.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987902 ◽  
Author(s):  
Ronglei Xie ◽  
Zhijun Meng ◽  
Yaoming Zhou ◽  
Yunpeng Ma ◽  
Zhe Wu

In order to solve the problem that the existing reinforcement learning algorithm is difficult to converge due to the excessive state space of the three-dimensional path planning of the unmanned aerial vehicle, this article proposes a reinforcement learning algorithm based on the heuristic function and the maximum average reward value of the experience replay mechanism. The knowledge of track performance is introduced to construct heuristic function to guide the unmanned aerial vehicles’ action selection and reduce the useless exploration. Experience replay mechanism based on maximum average reward increases the utilization rate of excellent samples and the convergence speed of the algorithm. The simulation results show that the proposed three-dimensional path planning algorithm has good learning efficiency, and the convergence speed and training performance are significantly improved.


Sign in / Sign up

Export Citation Format

Share Document