Average Reward Reinforcement Learning: Foundations, Algorithms, and Empirical Results

Author(s):  
Sridhar Mahadevan
Author(s):  
Yoshihiro Ichikawa ◽  
◽  
Keiki Takadama

This paper proposes the reinforcement learning agent that estimates internal rewards using external rewards in order to avoid conflict in multi-step dilemma problem. Intensive simulation results have revealed that the agent succeeds in avoiding local convergence and obtains a behavior policy for reaching a higher reward by updating the Q-value using the value that is subtracted the average reward from an external reward.


Author(s):  
Qiuyuan Huang ◽  
Zhe Gan ◽  
Asli Celikyilmaz ◽  
Dapeng Wu ◽  
Jianfeng Wang ◽  
...  

We propose a hierarchically structured reinforcement learning approach to address the challenges of planning for generating coherent multi-sentence stories for the visual storytelling task. Within our framework, the task of generating a story given a sequence of images is divided across a two-level hierarchical decoder. The high-level decoder constructs a plan by generating a semantic concept (i.e., topic) for each image in sequence. The low-level decoder generates a sentence for each image using a semantic compositional network, which effectively grounds the sentence generation conditioned on the topic. The two decoders are jointly trained end-to-end using reinforcement learning. We evaluate our model on the visual storytelling (VIST) dataset. Empirical results from both automatic and human evaluations demonstrate that the proposed hierarchically structured reinforced training achieves significantly better performance compared to a strong flat deep reinforcement learning baseline.


Sign in / Sign up

Export Citation Format

Share Document