Applying Static Analysis Techniques for Inferring Termination Conditions of Logic Programs

Author(s):  
Fred Mesnard ◽  
Ulrich Neumerkel
2021 ◽  
Vol 54 (7) ◽  
pp. 1-37
Author(s):  
Jihyeok Park ◽  
Hongki Lee ◽  
Sukyoung Ryu

Understanding program behaviors is important to verify program properties or to optimize programs. Static analysis is a widely used technique to approximate program behaviors via abstract interpretation. To evaluate the quality of static analysis, researchers have used three metrics: performance, precision, and soundness. The static analysis quality depends on the analysis techniques used, but the best combination of such techniques may be different for different programs. To find the best combination of analysis techniques for specific programs, recent work has proposed parametric static analysis . It considers static analysis as black-box parameterized by analysis parameters , which are techniques that may be configured without analysis details. We formally define the parametric static analysis, and we survey analysis parameters and their parameter selection in the literature. We also discuss open challenges and future directions of the parametric static analysis.


2020 ◽  
Author(s):  
Kristóf Umann ◽  
Zoltán Porkoláb

Uninitialized variables have been a source of errors since the beginning of software engineering. Some programming languages (e.g. Java and Python) will automatically zero-initialize such variables, but others, like C and C++, leave their state undefined. While laying aside initialization in C and C++ might be a performance advantage if an initial value can't be supplied, working with such variables is an undefined behavior, and is a common source of instabilities and crashes. To avoid such errors, whenever meaningful initialization is possible, it should be used. Tools for detecting these errors run time have existed for decades, but those require the problematic code to be executed. Since in many cases the number of possible execution paths are combinatoric, static analysis techniques emerged as an alternative. In this paper, we overview the technique for detecting uninitialized C++ variables using the Clang Static Analyzer, and describe various heuristics to guess whether a specific variable was left in an undefined state intentionally. We implemented a prototype tool based on our idea and successfully tested it on large open source projects.


2010 ◽  
Vol 11 (1) ◽  
pp. 33-63 ◽  
Author(s):  
MANH THANG NGUYEN ◽  
DANNY DE SCHREYE ◽  
JÜRGEN GIESL ◽  
PETER SCHNEIDER-KAMP

AbstractOur goal is to study the feasibility of porting termination analysis techniques developed for one programming paradigm to another paradigm. In this paper, we show how to adapt termination analysis techniques based on polynomial interpretations—very well known in the context of term rewrite systems—to obtain new (nontransformational) termination analysis techniques for definite logic programs (LPs). This leads to an approach that can be seen as a direct generalization of the traditional techniques in termination analysis of LPs, where linear norms and level mappings are used. Our extension generalizes these to arbitrary polynomials. We extend a number of standard concepts and results on termination analysis to the context of polynomial interpretations. We also propose a constraint-based approach for automatically generating polynomial interpretations that satisfy the termination conditions. Based on this approach, we implemented a new tool, called Polytool, for automatic termination analysis of LPs.


2009 ◽  
Vol 9 (05) ◽  
pp. 617-689 ◽  
Author(s):  
GIANLUCA AMATO ◽  
FRANCESCA SCOZZARI

AbstractWe face the problems of correctness, optimality, and precision for the static analysis of logic programs, using the theory of abstract interpretation. We propose a framework with a denotational, goal-dependent semantics equipped with two unification operators for forward unification (calling a procedure) and backward unification (returning from a procedure). The latter is implemented through a matching operation. Our proposal clarifies and unifies many different frameworks and ideas on static analysis of logic programming in a single, formal setting. On the abstract side, we focus on the domainsharingby Jacobs and Langen (The Journal of Logic Programming, 1992, vol. 13, nos. 2–3, pp. 291–314) and provide the best correct approximation of all the primitive semantic operators, namely, projection, renaming, and forward and backward unifications. We show that the abstract unification operators are strictly more precise than those in the literature defined over the same abstract domain. In some cases, our operators are more precise than those developed for more complex domains involving linearity and freeness.


Sign in / Sign up

Export Citation Format

Share Document