Three-dimensional highly accurate MmB schemes for viscous, compressible flow problems

Author(s):  
Huamo Wu ◽  
Koichi Oshima
Author(s):  
W. N. Dawes

The present paper describes a computer code, currently under development, aimed at solving the equations of three-dimensional viscous compressible flow in turbomachinery goemetries. The code uses a simple, novel pre-processed implicit algorithm. An outline of the method is given and the current capabilities of the code are assessed. The code is applied to the study of the flowfield in a cascade of transonic gas turbine rotor blades. The geometry and the presence of inlet end-wall boundary layers lead to significant three-dimensional effects. The pattern of secondary flow development, including the details of the leading edge horseshoe vortex and associated saddle point, are clearly resolved and correspond to experimental experience. A computation is also presented to show the influence of dihedral (non-linear stacking) on the secondary flow development.


1993 ◽  
Author(s):  
LAURA DUTTO ◽  
WAGDI HABASHI ◽  
MICHEL FORTIN ◽  
MICHEL ROBICHAUD

1999 ◽  
Vol 7 ◽  
pp. 408-417 ◽  
Author(s):  
J. H. Strickland ◽  
L. A. Gritzo ◽  
R. S. Baty ◽  
G. F. Homicz ◽  
S. P. Burns

Author(s):  
Michael Zabarankin

Exact solutions to three-dimensional Stokes flow problems for asymmetric translation and rotation of two fused rigid spheres of equal size have been obtained in toroidal coordinates. The problems have been reduced to three-contour equations for meromorphic functions from a certain class, and then the latter have been reduced to Fredholm integral equations of the second kind by the Mehler–Fock transform of order 1. For the specified class of functions, the equivalence of the corresponding three-contour and Fredholm equations has been established in the framework of Riemann boundary-value problems for analytic functions. As an illustration for the obtained solutions, the pressure has been calculated at the surface of the body for both problems, and resisting force and torque, experienced by the body in asymmetric translation and rotation, have been computed as functions of a geometrical parameter of the body.


Sign in / Sign up

Export Citation Format

Share Document