time integration scheme
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 54)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 389 ◽  
pp. 114298
Author(s):  
M. Franke ◽  
R. Ortigosa ◽  
J. Martínez-Frutos ◽  
A.J. Gil ◽  
P. Betsch

2021 ◽  
pp. 108128652110592
Author(s):  
Emilio Turco ◽  
Emilio Barchiesi ◽  
Francesco dell’Isola

In this contribution, a previously introduced discrete model for studying the statics of duoskelion beam-like structures is extended to dynamics. The results of numerical simulations performed using such an extended model are reported to discuss the in-plane dynamic buckling of duoskelion structures under different loading and kinematic boundary conditions. The core instrument of the analysis is a discrete beam element, which, in addition to flexure, also accounts for extension and shearing deformations. Working in the setting of dynamics, inertial contributions are taken into account as well. A stepwise time integration scheme is employed to reconstruct the complete trajectory of the system, namely before and after buckling. It is concluded that the duoskelion structure exhibits exotic features compared with classical beam-like structures modeled at macro-scale by Euler–Bernoulli’s model.


PAMM ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Julia Nicolina Bergmann ◽  
Alexander Schwarz ◽  
Joachim Bluhm ◽  
Jörg Schröder

Author(s):  
Pedro Navas ◽  
Miguel Molinos ◽  
Miguel M. Stickle ◽  
Diego Manzanal ◽  
Angel Yagüe ◽  
...  

AbstractIn this paper, an efficient and robust methodology to simulate saturated soils subjected to low-medium frequency dynamic loadings under large deformation regime is presented. The coupling between solid and fluid phases is solved through the dynamic reduced formulation $$u-p_\mathrm{w}$$ u - p w (solid displacement – pore water pressure) of the Biot’s equations. The additional novelty lies in the employment of an explicit two-steps Newmark predictor-corrector time integration scheme that enables accurate solutions of related geomechanical problems at large strain without the usually high computational cost associated with the implicit counterparts. Shape functions based on the elegant Local Maximum Entropy approach, through the Optimal Transportation Meshfree framework, are considered to solve numerically different dynamic problems in fluid saturated porous media.


Sign in / Sign up

Export Citation Format

Share Document