Expression and motion control of hair using fast collision detection methods

Author(s):  
Makoto Ando ◽  
Shigeo Morishima
2009 ◽  
Vol 42 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Ehsan Arbabi ◽  
Ronan Boulic ◽  
Daniel Thalmann

2014 ◽  
Vol 536-537 ◽  
pp. 603-606
Author(s):  
Yu Mei Liu ◽  
Yu Dan Dong ◽  
Jing Wu

According to the characteristics and needs of virtual scenic roaming system, select the appropriate modeling techniques. By using the modeling platform scenic entity object model structure, and then build virtual tourist attractions, we propose hierarchical collision detection methods. This method actually meets the accuracy requirements under the premise, greatly reducing the number and complexity of collision detection; effectively improve the system in real time.


1999 ◽  
Author(s):  
ZhuLiang Cai ◽  
John Dill ◽  
Shahram Payandeh

Abstract 3D collision detection and modeling techniques can be used in the development of haptic rendering schemes which can be used, for example, in surgical training, virtual assembly, or games. Based on a fast collision detection algorithm (RAPID) and 3D object representation, a practical haptic rendering system has been developed. A sub-system determines detailed collision information. Simulation results are presented to demonstrate the practicality of our results.


Author(s):  
JIAWEN WU ◽  
FENGQUAN ZHANG ◽  
XUKUN SHEN

In this paper, we present a method for fluid simulation based on smoothed particle hydrodynamic (SPH) with fast collision detection on boundaries on GPU. The major goal of our algorithm is to get a fast SPH simulation and rendering on GPU. Additionally, our algorithm has the following three features: At first, to make the SPH method GPU-friendly, we introduce a spatial hash method for neighbor search. After sorting the particles based on their grid index, neighbor search can be done quickly on GPU. Second, we propose a fast particle-boundary collision detection method. By precomputing the distance field of scene boundaries, collision detection's computing cost arrived as O(n), which is much faster than the traditional way. Third, we propose a pipeline with fine-detail surface reconstruction, and progressive photon mapping working on GPU. We experiment our algorithm on different situations and particle numbers of scenes, and find out that our method gets good results. Our experimental data shows that we can simulate 100K particles, and up to 1000K particles scene at a rate of approximately 2 times per second.


2014 ◽  
Vol 488-489 ◽  
pp. 1480-1484
Author(s):  
Juan Lu ◽  
Jia Xun Wei ◽  
Wei Xia ◽  
Jun Yan Ma ◽  
Li Ying ◽  
...  

It is an innovative design method in physics that product layout design is abstracted into convex hull plus rubber band simulation layout mode by setting up the optimized model. Based on the physics model of Newtons Second Law, this paper analyzed collision detection methods during the process of realizing reasonable layout, and it is founded that real-time collision detection and collision response during movement, produced components within the given beat, appeared to be the key content of resolving digital model design. In this paper, Area Difference method was adopted to detect when the collision occurred during component movement and what kind of state the component tended to be in collision. At the same time, it also determined the interference degree, solved critical point pose for collision response as well as its generation time and related torque and force, which can confirm the components continued movement model of rotation and sliding. Meanwhile, it employed the Judgment Matrix method to analyze collision response so as to confirm the collision interference relationship and collision action state, movement possessing mode (rotation, sliding and retraction, etc.) within the remaining time after collision with given beat during the layout process. All these provided with a practical solution for digital design of optimized model based on convex hull plus rubber band simulation compact layout.


Sign in / Sign up

Export Citation Format

Share Document