scholarly journals On the dimension theory of polynomial rings over pullbacks

Author(s):  
S. Kabbaj
Fractals ◽  
2007 ◽  
Vol 15 (01) ◽  
pp. 63-72 ◽  
Author(s):  
JÖRG NEUNHÄUSERER

We develop the dimension theory for a class of linear solenoids, which have a "fractal" attractor. We will find the dimension of the attractor, proof formulas for the dimension of ergodic measures on this attractor and discuss the question of whether there exists a measure of full dimension.


2008 ◽  
Vol 319 (10) ◽  
pp. 4199-4221 ◽  
Author(s):  
Heidi Haynal

2005 ◽  
Vol 15 (05n06) ◽  
pp. 1169-1188 ◽  
Author(s):  
ROMAN SAUER

There are notions of L2-Betti numbers for discrete groups (Cheeger–Gromov, Lück), for type II1-factors (recent work of Connes-Shlyakhtenko) and for countable standard equivalence relations (Gaboriau). Whereas the first two are algebraically defined using Lück's dimension theory, Gaboriau's definition of the latter is inspired by the work of Cheeger and Gromov. In this work we give a definition of L2-Betti numbers of discrete measured groupoids that is based on Lück's dimension theory, thereby encompassing the cases of groups, equivalence relations and holonomy groupoids with an invariant measure for a complete transversal. We show that with our definition, like with Gaboriau's, the L2-Betti numbers [Formula: see text] of a countable group G coincide with the L2-Betti numbers [Formula: see text] of the orbit equivalence relation [Formula: see text] of a free action of G on a probability space. This yields a new proof of the fact the L2-Betti numbers of groups with orbit equivalent actions coincide.


Sign in / Sign up

Export Citation Format

Share Document