Mandible Explant Assay for the Analysis of Meckel’s Cartilage Development

Author(s):  
Sophie Wiszniak ◽  
Quenten Schwarz
2004 ◽  
Vol 231 (1) ◽  
pp. 136-147 ◽  
Author(s):  
Tsuyoshi Shimo ◽  
Manabu Kanyama ◽  
Changshan Wu ◽  
Hiroki Sugito ◽  
Paul C. Billings ◽  
...  

2002 ◽  
Vol 224 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Yoshihiro Ito ◽  
Pablo Bringas ◽  
Ali Mogharei ◽  
Jingsong Zhao ◽  
Chuxia Deng ◽  
...  

1995 ◽  
Vol 170 (2) ◽  
pp. 387-396 ◽  
Author(s):  
Kun Sung Chung ◽  
Howard H. Park ◽  
Kang Ting ◽  
Hiroko Takita ◽  
Suneel S. Apte ◽  
...  

2011 ◽  
Vol 218 (5) ◽  
pp. 517-533 ◽  
Author(s):  
Tamaki Yokohama-Tamaki ◽  
Takashi Maeda ◽  
Tetsuya S. Tanaka ◽  
Shunichi Shibata

2020 ◽  
pp. 002203452096011
Author(s):  
M. Farahat ◽  
G.A.S. Kazi ◽  
E.S. Hara ◽  
T. Matsumoto

During orofacial tissue development, the anterior and posterior regions of the Meckel’s cartilage undergo mineralization, while the middle region undergoes degeneration. Despite the interesting and particular phenomena, the mechanisms that regulate the different fates of Meckel’s cartilage, including the effects of biomechanical cues, are still unclear. Therefore, the purpose of this study was to systematically investigate the course of Meckel’s cartilage during embryonic development from a biomechanical perspective. Histomorphological and biomechanical (stiffness) changes in the Meckel’s cartilage were analyzed from embryonic day 12 to postnatal day 0. The results revealed remarkable changes in the morphology and size of chondrocytes, as well as the occurrence of chondrocyte burst in the vicinity of the mineralization site, an often-seen phenomenon preceding endochondral ossification. To understand the effect of biomechanical cues on Meckel’s cartilage fate, a mechanically tuned 3-dimensional hydrogel culture system was used. At the anterior region, a moderately soft environment (10-kPa hydrogel) promoted chondrocyte burst and ossification. On the contrary, at the middle region, a more rigid environment (40-kPa hydrogel) enhanced cartilage degradation by inducing a higher expression of MMP-1 and MMP-13. These results indicate that differences in the biomechanical properties of the surrounding environment are essential factors that distinctly guide the mineralization and degradation of Meckel’s cartilage and would be valuable tools for modulating in vitro cartilage and bone tissue engineering.


Development ◽  
2020 ◽  
Vol 147 (11) ◽  
pp. dev190488 ◽  
Author(s):  
Ceilidh Marchant ◽  
Peter Anderson ◽  
Quenten Schwarz ◽  
Sophie Wiszniak

2012 ◽  
Vol 295 (5) ◽  
pp. 734-741 ◽  
Author(s):  
Rong-Tao Yang ◽  
Chi Zhang ◽  
Yong Liu ◽  
Hai-Hua Zhou ◽  
Zu-Bing Li

Sign in / Sign up

Export Citation Format

Share Document