cartilage cells
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 46)

H-INDEX

42
(FIVE YEARS 4)

Author(s):  
Mylène Zarka ◽  
Eric Haÿ ◽  
Martine Cohen-Solal

YAP and TAZ were initially described as the main regulators of organ growth during development and more recently implicated in bone biology. YAP and TAZ are regulated by mechanical and cytoskeletal cues that lead to the control of cell fate in response to the cellular microenvironment. The mechanical component represents a major signal for bone tissue adaptation and remodelling, so YAP/TAZ contributes significantly in bone and cartilage homeostasis. Recently, mice and cellular models have been developed to investigate the precise roles of YAP/TAZ in bone and cartilage cells, and which appear to be crucial. This review provides an overview of YAP/TAZ regulation and function, notably providing new insights into the role of YAP/TAZ in bone biology.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 258
Author(s):  
Ching-Cheng Huang

This study presents a designed alginate-based polymeric composite foam material containing decellularized elastic cartilage microscaffolds from porcine elastic cartilage by using supercritical fluid and papain treatment for medical scaffold biomaterials. The microstructure and thermal property of the designed alginate-based polymeric composite foam materials with various controlled ratios of alginate molecules and decellularized elastic cartilage microscaffolds were studied and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential thermal gravimetric analysis (TGA/DTG). The microstructure and thermal property of the composite foam materials were affected by the introduction of decellularized elastic cartilage microscaffolds. The designed alginate-based polymeric composite foam materials containing decellularized elastic cartilage microscaffolds were ionically cross-linked with calcium ions by soaking the polymeric composite foam materials in a solution of calcium chloride. Additional calcium ions further improved the microstructure and thermal stability of the resulting ionic cross-linked alginate-based polymeric composite foam materials. Furthermore, the effect of crosslinking functionality on microstructures and thermal properties of the resulting polymeric composite foam materials were studied to build up useful information for 3D substrates for cultivating and growing cartilage cells and/or cartilage tissue engineering.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yajing Wang ◽  
Dan Ma ◽  
Zewen Wu ◽  
Baoqi Yang ◽  
Rong Li ◽  
...  

AbstractMesenchymal stem cells (MSCs) are pluripotent stem cells derived from mesoderm during early development that are characterized by high self-renewal ability and multidirectional differentiation potential. These cells are present various tissues in the human body and can be cultured in vitro. Under specific conditions, MSCs can differentiate into osteoblasts, neuron-like cells, adipocytes and muscle cells and so on, therefore, have a great application value in cell replacement therapy and tissue repair. In recent years, the application of MSCs in rheumatic diseases has received increasing attention. On the one hand, MSCs have the ability to differentiate into bone and cartilage cells; on the other hand, these stem cells are also involved in immune regulation, resulting in the alleviation of inflammation and anti-fibrotic properties and the promotion of vascular repair, thus bringing new hope for the treatment of rheumatic diseases. This article reviews the clinical progress in MSC application for the treatment of rheumatic diseases.


2021 ◽  
Author(s):  
Liang Hao ◽  
Jun Chen ◽  
Xiliang Shang ◽  
Wu Yang ◽  
Shiyi Chen

Abstract BackgroundOsteoarthritis (OA) adversely affects quality of life of elderly patients and is among hotspots and challenges of current research efforts. However, mechanism of occurrence and development of OA has not been fully elucidated. MethodsThrough qRT-PCR and Western blot assays, the current study established that levels of Rock2, a key protein in Rho signaling pathway, were significantly higher in OA cartilage. Furthermore, the current study explored effect of down-regulating Rock2 expression on growth and apoptosis of cartilage cells using CCK-8, Edu and Flow cytometry assays. Alkaline phosphatase (ALP) and Alizarin Red S (ARS) assays were then used to determine differentiation effects.ResultsFindings showed that expression of Rock2 is closely related to proliferation, apoptosis and differentiation of chondrocytes. Furthermore, the current study confirmed that Rock2 affects growth and differentiation of chondrocytes by activating β-catenin signaling pathway. Conclusionthe current study provided novel insights to targeted therapy of OA.


2021 ◽  
Vol 27 (7) ◽  
pp. 682-685
Author(s):  
Lan Zhou

ABSTRACT Introduction: Articular cartilage is an essential structure for joint weight-bearing and movement. If it is always under a specific mechanical stimulation, it will cause osteoarthritis (OA) and even involve the articular cartilage. Sports can affect articular cartilage thickness, cartilage surface morphology, and cartilage cell metabolism. Objective: This thesis studies the cell metabolism of knee cartilage tissue with exercises of different intensities. Methods: We divided 40 rats into four groups according to exercise intensity. The control group exercised freely, while the experimental group exercised with different intensities. After eight weeks of exercise, we extracted the knee joint cartilage to observe its cell metabolism. Results: We found that the cartilage surface of the rats was complete after exercise, and the thickness of the cartilage layer was significantly greater than that of rats without exercise. Conclusion: Exercises of different intensities have different effects on the metabolism of cartilage cells in the knee joint of rats. Level of evidence II; Therapeutic studies - investigation of treatment results.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 866
Author(s):  
Luong Huu Dang ◽  
Yuan Tseng ◽  
How Tseng ◽  
Shih-Han Hung

In this study, we developed a new procedure for the rapid partial decellularization of the harvested trachea. Partial decellularization was performed using a combination of detergent and sonication to completely remove the epithelial layers outside of the cartilage ring. The post-decellularized tracheal segments were assessed with vital staining, which showed that the core cartilage cells remarkably remained intact while the cells outside of the cartilage were no longer viable. The ability of the decellularized tracheal segments to evade immune rejection was evaluated through heterotopic implantation of the segments into the chest muscle of rabbits without any immunosuppressive therapy, which demonstrated no evidence of severe rejection or tissue necrosis under H&E staining, as well as the mechanical stability under stress-pressure testing. Finally, orthotopic transplantation of partially decellularized trachea with no immunosuppression treatment resulted in 2 months of survival in two rabbits and one long-term survival (2 years) in one rabbit. Through evaluations of posttransplantation histology and endoscopy, we confirmed that our partial decellularization method could be a potential method of producing low-immunogenic cartilage scaffolds with viable, functional core cartilage cells that can achieve long-term survival after in vivo transplantation.


Sign in / Sign up

Export Citation Format

Share Document