The localization of thiamine pyrophosphatase activity in Meckel's cartilage cells during endochondral ossification

1982 ◽  
Vol 76 (4) ◽  
pp. 539-546 ◽  
Author(s):  
T. Akisaka
2020 ◽  
pp. 002203452096011
Author(s):  
M. Farahat ◽  
G.A.S. Kazi ◽  
E.S. Hara ◽  
T. Matsumoto

During orofacial tissue development, the anterior and posterior regions of the Meckel’s cartilage undergo mineralization, while the middle region undergoes degeneration. Despite the interesting and particular phenomena, the mechanisms that regulate the different fates of Meckel’s cartilage, including the effects of biomechanical cues, are still unclear. Therefore, the purpose of this study was to systematically investigate the course of Meckel’s cartilage during embryonic development from a biomechanical perspective. Histomorphological and biomechanical (stiffness) changes in the Meckel’s cartilage were analyzed from embryonic day 12 to postnatal day 0. The results revealed remarkable changes in the morphology and size of chondrocytes, as well as the occurrence of chondrocyte burst in the vicinity of the mineralization site, an often-seen phenomenon preceding endochondral ossification. To understand the effect of biomechanical cues on Meckel’s cartilage fate, a mechanically tuned 3-dimensional hydrogel culture system was used. At the anterior region, a moderately soft environment (10-kPa hydrogel) promoted chondrocyte burst and ossification. On the contrary, at the middle region, a more rigid environment (40-kPa hydrogel) enhanced cartilage degradation by inducing a higher expression of MMP-1 and MMP-13. These results indicate that differences in the biomechanical properties of the surrounding environment are essential factors that distinctly guide the mineralization and degradation of Meckel’s cartilage and would be valuable tools for modulating in vitro cartilage and bone tissue engineering.


1996 ◽  
Vol 14 (4) ◽  
pp. 202-213 ◽  
Author(s):  
Kiyoto Ishizeki ◽  
Yuji Hiraki ◽  
Heitai Kim ◽  
Fujio Suzuki ◽  
Tokio Nawa

1995 ◽  
Vol 170 (2) ◽  
pp. 387-396 ◽  
Author(s):  
Kun Sung Chung ◽  
Howard H. Park ◽  
Kang Ting ◽  
Hiroko Takita ◽  
Suneel S. Apte ◽  
...  

Parasitology ◽  
1975 ◽  
Vol 70 (3) ◽  
pp. 331-340 ◽  
Author(s):  
D. W. Halton

The ultrastructural and cytochemical changes accompanying intracellular digestion and cellular defecation in the haematin cell of Diclidophora merlangi have been described. Blood proteins of the host-fish are sequestered by endocytosis and degraded within an interconnecting network of channels that form an integral, but changing, part of the cell. The digestive enzymes involved originate in the granular endoplasmic reticulum and are packaged in the Golgi apparatus and transferred to the channels in Golgi vesicles. The rate of haemoglobin absorption and the activity of the Golgi, as judged by vesicle counts and staining intensities for thiamine pyrophosphatase activity, are stimulated by the introduction of host protein into the gut lumen. The haematin residues of digestion are extruded periodically into the lumen by exocytosis involving membrane fusion. The process is a continuous one and, in worms starved of food, can result in the complete evacuation of pigment from the cell. It is suggested that a lysosomal system operates in the digestive cycle of the haematin cell.


2011 ◽  
Vol 218 (5) ◽  
pp. 517-533 ◽  
Author(s):  
Tamaki Yokohama-Tamaki ◽  
Takashi Maeda ◽  
Tetsuya S. Tanaka ◽  
Shunichi Shibata

Development ◽  
2020 ◽  
Vol 147 (11) ◽  
pp. dev190488 ◽  
Author(s):  
Ceilidh Marchant ◽  
Peter Anderson ◽  
Quenten Schwarz ◽  
Sophie Wiszniak

2012 ◽  
Vol 295 (5) ◽  
pp. 734-741 ◽  
Author(s):  
Rong-Tao Yang ◽  
Chi Zhang ◽  
Yong Liu ◽  
Hai-Hua Zhou ◽  
Zu-Bing Li

Sign in / Sign up

Export Citation Format

Share Document