A New Method of Modelling and Simulation for Large-Scale Hydraulic Systems

Author(s):  
Li Yongtang ◽  
Yu Xinlu
1979 ◽  
Vol 6 (2) ◽  
pp. 70-72
Author(s):  
T. A. Coffelt ◽  
F. S. Wright ◽  
J. L. Steele

Abstract A new method of harvesting and curing breeder's seed peanuts in Virginia was initiated that would 1) reduce the labor requirements, 2) maintain a high level of germination, 3) maintain varietal purity at 100%, and 4) reduce the risk of frost damage. Three possible harvesting and curing methods were studied. The traditional stack-pole method satisfied the latter 3 objectives, but not the first. The windrow-combine method satisfied the first 2 objectives, but not the last 2. The direct harvesting method satisfied all four objectives. The experimental equipment and curing procedures for direct harvesting had been developed but not tested on a large scale for seed harvesting. This method has been used in Virginia to produce breeder's seed of 3 peanut varieties (Florigiant, VA 72R and VA 61R) during five years. Compared to the stackpole method, labor requirements have been reduced, satisfactory levels of germination and varietal purity have been obtained, and the risk of frost damage has been minimized.


2019 ◽  
Vol 35 (14) ◽  
pp. i417-i426 ◽  
Author(s):  
Erin K Molloy ◽  
Tandy Warnow

Abstract Motivation At RECOMB-CG 2018, we presented NJMerge and showed that it could be used within a divide-and-conquer framework to scale computationally intensive methods for species tree estimation to larger datasets. However, NJMerge has two significant limitations: it can fail to return a tree and, when used within the proposed divide-and-conquer framework, has O(n5) running time for datasets with n species. Results Here we present a new method called ‘TreeMerge’ that improves on NJMerge in two ways: it is guaranteed to return a tree and it has dramatically faster running time within the same divide-and-conquer framework—only O(n2) time. We use a simulation study to evaluate TreeMerge in the context of multi-locus species tree estimation with two leading methods, ASTRAL-III and RAxML. We find that the divide-and-conquer framework using TreeMerge has a minor impact on species tree accuracy, dramatically reduces running time, and enables both ASTRAL-III and RAxML to complete on datasets (that they would otherwise fail on), when given 64 GB of memory and 48 h maximum running time. Thus, TreeMerge is a step toward a larger vision of enabling researchers with limited computational resources to perform large-scale species tree estimation, which we call Phylogenomics for All. Availability and implementation TreeMerge is publicly available on Github (http://github.com/ekmolloy/treemerge). Supplementary information Supplementary data are available at Bioinformatics online.


2012 ◽  
Vol 166-169 ◽  
pp. 68-72
Author(s):  
Shu Tang Liu ◽  
Qi Liang Long

A new method tracing the load-deflection equilibrium path of a truss with doubly nonlinearity is proposed. The total global stiffness matrix equation has been formulated in terms of nodal coordinates, iteration formulations has been written through adopting a single control coordinate, so that an new method tracing the load-deflection equilibrium path has been proposed. Analysis results of Star dome truss and Schwedeler dome truss have shown that the proposed method is stable numerically, quick in convergence, high in degree of accuracy and easy in use. The proposed method can be used for large-scale truss structure.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Mourad Elloumi ◽  
Samira Kamoun

This paper deals with the self-tuning regulator for large-scale stochastic nonlinear systems, which are composed of several interconnected nonlinear monovariable subsystems. Each interconnected subsystem is described by discrete Hammerstein model with unknown and time-varying parameters. This self-tuning control is developed on the basis of the minimum variance approach and is combined by a recursive algorithm in the estimation step. The parametric estimation step is performed on the basis of the prediction error method and the least-squares techniques. Simulation results of the proposed self-tuning regulator for two interconnected nonlinear hydraulic systems show the reliability and effectiveness of the developed method.


ChemInform ◽  
2010 ◽  
Vol 28 (14) ◽  
pp. no-no
Author(s):  
K. YAMAMOTO ◽  
T. SHIMONO ◽  
T. OKADA ◽  
Y. KAWAZAWA ◽  
T. TATSUNO

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 962 ◽  
Author(s):  
Cuicui Hu ◽  
Zhensheng Yang ◽  
Qichao Sun ◽  
Zhihua Ni ◽  
Guofei Yan ◽  
...  

A facile method combining micro-molding with thermally-induced phase separation (TIPS) to prepare superhydrophobic isotacticpolypropylene (iPP) microporous membranes with micron-submicron hierarchical structures is proposed in this paper. In this study, the hydrophobicity of the membrane was controlled by changing the size of micro-structures on the micro-structured mold and the temperature of the cooling bath. The best superhydrophobicity was achieved with a high water contact angle (WCA) of 161° and roll-off angle of 2°, which was similar to the lotus effect. The permeability of the membrane was greatly improved and the mechanical properties were maintained. The membrane prepared by the new method and subjected to 60h vacuum membrane distillation (VMD) was compared with a conventional iPP membrane prepared via the TIPS process. The flux of the former membrane was 31.2 kg/m2·h, and salt rejection was always higher than 99.95%, which was obviously higher than that of the latter membrane. The deposition of surface fouling on the former membrane was less and loose, and that of the latter membrane was greater and steady, which was attributed to the micron-submicron hierarchical structure of the former and the single submicron-structure of the latter. Additionally, the new method is expected to become a feasible and economical method for producing an ideal membrane for membrane distillation (MD) on a large scale.


Geomorphology ◽  
2020 ◽  
Vol 369 ◽  
pp. 107374
Author(s):  
Shuyan Zhang ◽  
Yong Ma ◽  
Fu Chen ◽  
Jianbo Liu ◽  
Fulong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document