Production Planning Under Supply and Demand Uncertainty: A Stochastic Programming Approach

Author(s):  
Julia L. Higle ◽  
Karl G. Kempf
Author(s):  
Sankar Kumar Roy ◽  
Deshabrata Roy Mahapatra

In this chapter, the authors propose a new approach to analyze the Solid Transportation Problem (STP). This new approach considers the multi-choice programming into the cost coefficients of objective function and stochastic programming, which is incorporated in three constraints, namely sources, destinations, and capacities constraints, followed by Cauchy's distribution for solid transportation problem. The multi-choice programming and stochastic programming are combined into a solid transportation problem, and this new problem is called Multi-Choice Stochastic Solid Transportation Problem (MCSSTP). The solution concepts behind the MCSSTP are based on a new transformation technique that will select an appropriate choice from a set of multi-choice, which optimize the objective function. The stochastic constraints of STP converts into deterministic constraints by stochastic programming approach. Finally, the authors construct a non-linear programming problem for MCSSTP, and by solving it, they derive an optimal solution of the specified problem. A realistic example on STP is considered to illustrate the methodology.


Author(s):  
Tanveer Hossain Bhuiyan ◽  
Mahantesh Halappanavar ◽  
Ryan D. Friese ◽  
Hugh Medal ◽  
Luis de la Torre ◽  
...  

2014 ◽  
Vol 5 (3) ◽  
pp. 1-26 ◽  
Author(s):  
Sankar Kumar Roy ◽  
Deshabrata Roy Mahapatra

This paper proposes a new approach to analyze the solid transportation problem (STP). This new approach considers the multi-choice programming into the cost coefficients of objective function and stochastic programming which is incorporated in three constraints namely sources, destinations and capacities constraints followed by Cauchy's distribution for solid transportation problem. The multi-choice programming and stochastic programming are combined into solid transportation problem and this new problem is called multi-choice stochastic solid transportation problem (MCSSTP). The solution concepts behind the MCSSTP are based on a new transformation technique which will select an appropriate choice from a set of multi-choice which optimizes the objective function. The stochastic constraints of STP convert into deterministic constraints by stochastic programming approach. Finally, the authors have constructed a non-linear programming problem for MCSSTP and have derived an optimal solution of the specified problem. A realistic example on STP is considered to illustrate the methodology.


MATEMATIKA ◽  
2018 ◽  
Vol 34 (3) ◽  
pp. 45-55 ◽  
Author(s):  
Norshela Mohd Noh ◽  
Arifah Bahar ◽  
Zaitul Marlizawati Zainuddin

Recently, oil refining industry is facing with lower profit margin due to uncertainty. This causes oil refinery to include stochastic optimization in making a decision to maximize the profit. In the past, deterministic linear programming approach is widely used in oil refinery optimization problems. However, due to volatility and unpredictability of oil prices in the past ten years, deterministic model might not be able to predict the reality of the situation as it does not take into account the uncertainties thus, leads to non-optimal solution. Therefore, this study will develop two-stage stochastic linear programming for the midterm production planning of oil refinery to handle oil price volatility. Geometric Brownian motion (GBM) is used to describe uncertainties in crude oil price, petroleum product prices, and demand for petroleum products. This model generates the future realization of the price and demands with scenario tree based on the statistical specification of GBM using method of moment as input to the stochastic programming. The model developed in this paper was tested for Malaysia oil refinery data. The result of stochastic approach indicates that the model gives better prediction of profit margin.


Author(s):  
Masoumeh Kazemi Zanjani ◽  
Daoud Ait Kadi ◽  
Mustapha Nourelfath

Sign in / Sign up

Export Citation Format

Share Document