Novel Features for Automated Cell Phenotype Image Classification

Author(s):  
Loris Nanni ◽  
Sheryl Brahnam ◽  
Alessandra Lumini
2010 ◽  
Vol 37 (2) ◽  
pp. 1556-1562 ◽  
Author(s):  
Loris Nanni ◽  
Alessandra Lumini ◽  
Yu-Shi Lin ◽  
Chun-Nan Hsu ◽  
Chung-Chih Lin

Author(s):  
Loris Nanni ◽  
Alessandra Lumini

Subcellular location is related to the knowledge of the spatial distribution of a protein within the cell. The knowledge of the location of all proteins is crucial for several applications ranging from early diagnosis of a disease to monitoring of therapeutic effectiveness of drugs. This chapter focuses on the study of machine learning techniques for cell phenotype image classification and is aimed at pointing out some of the advantages of using a multi-classifier system instead of a stand-alone method to solve this difficult classification problem. The main problems and solutions proposed in this field are discussed and a new approach is proposed based on ensemble of neural networks trained by local and global features. Finally, the most used benchmarks for this problem are presented and an experimental comparison among several state-of-the-art approaches is reported which allows to quantify the performance improvement obtained by the approach proposed in this chapter.


2007 ◽  
Vol 8 (1) ◽  
Author(s):  
Nicholas A Hamilton ◽  
Radosav S Pantelic ◽  
Kelly Hanson ◽  
Rohan D Teasdale

2012 ◽  
pp. 793-816
Author(s):  
Loris Nanni ◽  
Alessandra Lumini

Subcellular location is related to the knowledge of the spatial distribution of a protein within the cell. The knowledge of the location of all proteins is crucial for several applications ranging from early diagnosis of a disease to monitoring of therapeutic effectiveness of drugs. This chapter focuses on the study of machine learning techniques for cell phenotype image classification and is aimed at pointing out some of the advantages of using a multi-classifier system instead of a stand-alone method to solve this difficult classification problem. The main problems and solutions proposed in this field are discussed and a new approach is proposed based on ensemble of neural networks trained by local and global features. Finally, the most used benchmarks for this problem are presented and an experimental comparison among several state-of-the-art approaches is reported which allows to quantify the performance improvement obtained by the approach proposed in this chapter.


2001 ◽  
Vol 7 (S2) ◽  
pp. 578-579
Author(s):  
David W. Knowles ◽  
Sophie A. Lelièvre ◽  
Carlos Ortiz de Solόrzano ◽  
Stephen J. Lockett ◽  
Mina J. Bissell ◽  
...  

The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days.To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.


Sign in / Sign up

Export Citation Format

Share Document