On Sufficient Optimality Conditions for Semi-Infinite Discrete Minmax Fractional Programming Problems Under Generalized V-Invexity

Author(s):  
S. K. Mishra ◽  
Kin Keung Lai ◽  
Sy-Ming Guu ◽  
Kalpana Shukla
2009 ◽  
Vol 19 (1) ◽  
pp. 49-61
Author(s):  
Antoan Bătătorescu ◽  
Miruna Beldiman ◽  
Iulian Antonescu ◽  
Roxana Ciumara

Necessary and sufficient optimality conditions are established for a class of nondifferentiable minimax fractional programming problems with square root terms. Subsequently, we apply the optimality conditions to formulate a parametric dual problem and we prove some duality results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Shun-Chin Ho

We study nonsmooth multiobjective fractional programming problem containing local Lipschitz exponentialB-p,r-invex functions with respect toηandb. We introduce a new concept of nonconvex functions, called exponentialB-p,r-invex functions. Base on the generalized invex functions, we establish sufficient optimality conditions for a feasible point to be an efficient solution. Furthermore, employing optimality conditions to perform Mond-Weir type duality model and prove the duality theorems including weak duality, strong duality, and strict converse duality theorem under exponentialB-p,r-invexity assumptions. Consequently, the optimal values of the primal problem and the Mond-Weir type duality problem have no duality gap under the framework of exponentialB-p,r-invexity.


Filomat ◽  
2016 ◽  
Vol 30 (14) ◽  
pp. 3649-3665 ◽  
Author(s):  
Tadeusz Antczak

A new class of nonconvex smooth semi-infinite multiobjective fractional programming problems with both inequality and equality constraints is considered. We formulate and establish several parametric sufficient optimality conditions for efficient solutions in such nonconvex vector optimization problems under (?,?)-V-invexity and/or generalized (?,?)-V-invexity hypotheses. With the reference to the said functions, we extend some results of efficiency for a larger class of nonconvex smooth semi-infinite multiobjective programming problems in comparison to those ones previously established in the literature under other generalized convexity notions. Namely, we prove the sufficient optimality conditions for such nonconvex semi-infinite multiobjective fractional programming problems in which not all functions constituting them have the fundamental property of convexity, invexity and most generalized convexity notions.


Author(s):  
B.B. Upadhyay ◽  
T. Antczak ◽  
S.K. Mishra ◽  
K. Shukla

In this paper, a class of nonconvex nondifferentiable generalized minimax fractional programming problems is considered. Sufficient optimality conditions for the considered nondifferentiable generalized minimax fractional programming problem are established under the concept of (?,?)-invexity. Further, two types of dual models are formulated and various duality theorems relating to the primal minimax fractional programming problem and dual problems are established. The results established in the paper generalize and extend several known results in the literature to a wider class of nondifferentiable minimax fractional programming problems. To the best of our knowledge, these results have not been established till now.


2011 ◽  
Vol 2011 ◽  
pp. 1-22
Author(s):  
Shun-Chin Ho

We consider nondifferentiable minimax fractional programming problems involving B-(p, r)-invex functions with respect to η and b. Sufficient optimality conditions and duality results for a class of nondifferentiable minimax fractional programming problems are obtained undr B-(p, r)-invexity assumption on objective and constraint functions. Parametric duality, Mond-Weir duality, and Wolfe duality problems may be formulated, and duality results are derived under B-(p, r)-invex functions.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Jen-Chwan Liu ◽  
Chun-Yu Liu

We establish properly efficient necessary and sufficient optimality conditions for multiobjective fractional programming involving nonsmooth generalized(ℱ,b,ϕ,ρ,θ)-univex functions. Utilizing the necessary optimality conditions, we formulate the parametric dual model and establish some duality results in the framework of generalized(ℱ,b,ϕ,ρ,θ)-univex functions.


Sign in / Sign up

Export Citation Format

Share Document