strong duality
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 31)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Kenneth O. Kortanek ◽  
Guolin Yu ◽  
Qinghong Zhang

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Haijun Wang ◽  
Huihui Wang

AbstractIn this paper, we study the duality theorems of a nondifferentiable semi-infinite interval-valued optimization problem with vanishing constraints (IOPVC). By constructing the Wolfe and Mond–Weir type dual models, we give the weak duality, strong duality, converse duality, restricted converse duality, and strict converse duality theorems between IOPVC and its corresponding dual models under the assumptions of generalized convexity.


Author(s):  
Spyridon Pougkakiotis ◽  
Jacek Gondzio

AbstractIn this paper we generalize the Interior Point-Proximal Method of Multipliers (IP-PMM) presented in Pougkakiotis and Gondzio (Comput Optim Appl 78:307–351, 2021. 10.1007/s10589-020-00240-9) for the solution of linear positive Semi-Definite Programming (SDP) problems, allowing inexactness in the solution of the associated Newton systems. In particular, we combine an infeasible Interior Point Method (IPM) with the Proximal Method of Multipliers (PMM) and interpret the algorithm (IP-PMM) as a primal-dual regularized IPM, suitable for solving SDP problems. We apply some iterations of an IPM to each sub-problem of the PMM until a satisfactory solution is found. We then update the PMM parameters, form a new IPM neighbourhood, and repeat this process. Given this framework, we prove polynomial complexity of the algorithm, under mild assumptions, and without requiring exact computations for the Newton directions. We furthermore provide a necessary condition for lack of strong duality, which can be used as a basis for constructing detection mechanisms for identifying pathological cases within IP-PMM.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ladji Kané ◽  
Daouda Diawara ◽  
Lassina Diabaté ◽  
Moussa Konaté ◽  
Souleymane Kané ◽  
...  

We define linear programming problems involving trapezoidal fuzzy numbers (LPTra) as the way of linear programming problems involving interval numbers (LPIn). We will discuss the solution concepts of primal and dual linear programming problems involving trapezoidal fuzzy numbers (LPTra) by converting them into two linear programming problems involving interval numbers (LPIn). By introducing new arithmetic operations between interval numbers and fuzzy numbers, we will check that both primal and dual problems have optimal solutions and the two optimal values are equal. Also, both optimal solutions obey the strong duality theorem and complementary slackness theorem. Furthermore, for illustration, some numerical examples are used to demonstrate the correctness and usefulness of the proposed method. The proposed algorithm is flexible, easy, and reasonable.


Author(s):  
Thomas Kleinert ◽  
Veronika Grimm ◽  
Martin Schmidt

AbstractBilevel optimization problems have received a lot of attention in the last years and decades. Besides numerous theoretical developments there also evolved novel solution algorithms for mixed-integer linear bilevel problems and the most recent algorithms use branch-and-cut techniques from mixed-integer programming that are especially tailored for the bilevel context. In this paper, we consider MIQP-QP bilevel problems, i.e., models with a mixed-integer convex-quadratic upper level and a continuous convex-quadratic lower level. This setting allows for a strong-duality-based transformation of the lower level which yields, in general, an equivalent nonconvex single-level reformulation of the original bilevel problem. Under reasonable assumptions, we can derive both a multi- and a single-tree outer-approximation-based cutting-plane algorithm. We show finite termination and correctness of both methods and present extensive numerical results that illustrate the applicability of the approaches. It turns out that the proposed methods are capable of solving bilevel instances with several thousand variables and constraints and significantly outperform classical solution approaches.


2021 ◽  
Vol 6 (11) ◽  
pp. 12321-12338
Author(s):  
Yanfei Chai ◽  

<abstract><p>This paper deals with the robust strong duality for nonconvex optimization problem with the data uncertainty in constraint. A new weak conjugate function which is abstract convex, is introduced and three kinds of robust dual problems are constructed to the primal optimization problem by employing this weak conjugate function: the robust augmented Lagrange dual, the robust weak Fenchel dual and the robust weak Fenchel-Lagrange dual problem. Characterizations of inequality (1.1) according to robust abstract perturbation weak conjugate duality are established by using the abstract convexity. The results are used to obtain robust strong duality between noncovex uncertain optimization problem and its robust dual problems mentioned above, the optimality conditions for this noncovex uncertain optimization problem are also investigated.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document