Transform-Domain Signal Processing in Digital Communications

Author(s):  
H. Sari ◽  
P. Y. Cochet
2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Irena Orović ◽  
Vladan Papić ◽  
Cornel Ioana ◽  
Xiumei Li ◽  
Srdjan Stanković

Compressive sensing has emerged as an area that opens new perspectives in signal acquisition and processing. It appears as an alternative to the traditional sampling theory, endeavoring to reduce the required number of samples for successful signal reconstruction. In practice, compressive sensing aims to provide saving in sensing resources, transmission, and storage capacities and to facilitate signal processing in the circumstances when certain data are unavailable. To that end, compressive sensing relies on the mathematical algorithms solving the problem of data reconstruction from a greatly reduced number of measurements by exploring the properties of sparsity and incoherence. Therefore, this concept includes the optimization procedures aiming to provide the sparsest solution in a suitable representation domain. This work, therefore, offers a survey of the compressive sensing idea and prerequisites, together with the commonly used reconstruction methods. Moreover, the compressive sensing problem formulation is considered in signal processing applications assuming some of the commonly used transformation domains, namely, the Fourier transform domain, the polynomial Fourier transform domain, Hermite transform domain, and combined time-frequency domain.


Navigation ◽  
2019 ◽  
Vol 66 (2) ◽  
pp. 305-323 ◽  
Author(s):  
Daniele Borio ◽  
Pau Closas

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Rui-Feng Bai ◽  
Bing-Zhao Li ◽  
Qi-Yuan Cheng

The linear canonical transform is shown to be one of the most powerful tools for nonstationary signal processing. Based on the properties of the linear canonical transform and the classical Wigner-Ville transform, this paper investigates the Wigner-Ville distribution in the linear canonical transform domain. Firstly, unlike the classical Wigner-Ville transform, a new definition of Wigner-Ville distribution associated with the linear canonical transform is given. Then, the main properties of the newly defined Wigner-Ville transform are investigated in detail. Finally, the applications of the newly defined Wigner-Ville transform in the linear-frequency-modulated signal detection are proposed, and the simulation results are also given to verify the derived theory.


Sign in / Sign up

Export Citation Format

Share Document