Harmonic Analysis on the Heisenberg Group

Author(s):  
Sundaram Thangavelu
1991 ◽  
Vol 123 ◽  
pp. 103-117 ◽  
Author(s):  
Jae-Hyun Yang

A certain nilpotent Lie group plays an important role in the study of the foundations of quantum mechanics ([Wey]) and of the theory of theta series (see [C], [I] and [Wei]). This work shows how theta series are applied to decompose the natural unitary representation of a Heisenberg group.


Author(s):  
Soha Ali Salamah

In this research, we present some basic facts about Lie algebra and Lie groups. We shall require only elementary facts about the general definition and knowledge of a few of the more basic groups, such as Euclidean groups. Then we introduce the Heisenberg group which is the most well-known example from the realm of nilpotent Lie groups and plays an important role in several branches of mathematics, such as representation theory, partial differential equations and number theory... It also offers the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis.


Author(s):  
Soha Ali Salamah

In this paper we talk about Heisenberg group, the most know example from the lie groups. After that we discuss the representation theory of this group, and the relationship between the representation theory of the Heisenberg group and the position and momentum operatorsو and momentum operators.ors. ielationship between the representation theory of the Heisenberg group and the position and momen, that shows how we will make the connection between the Heisenberg group and physics. we have considered only the Schr dinger picture. That is, all the representations we considered are realized on the Hilbert space . we define the group Fourier transform on the Heisenberg group as an operator valued function, and other facts and properties. The main aim of our research is having the formula of Schr dinger Representation that connect physics with the Heisenberg group. Depending on this Representation we will study new formulas for some mathematical concepts such us Fourier Transform and  .


1985 ◽  
Vol 99 ◽  
pp. 45-62 ◽  
Author(s):  
Hisasi Morikawa

Heisenberg group H2g+1(R) of dimension 2g + 1 is a real nilpotent group defined on R × Rg × Rg by the law of composition which is isomorphic to the unipotent matrix group


Sign in / Sign up

Export Citation Format

Share Document