Stability of the Quadratic Functional Equation

Author(s):  
Donald H. Hyers ◽  
George Isac ◽  
Themistocles M. Rassias
Author(s):  
Roman Ger

Abstract  We deal with an alienation problem for an Euler–Lagrange type functional equation $$\begin{aligned} f(\alpha x + \beta y) + f(\alpha x - \beta y) = 2\alpha ^2f(x) + 2\beta ^2f(y) \end{aligned}$$ f ( α x + β y ) + f ( α x - β y ) = 2 α 2 f ( x ) + 2 β 2 f ( y ) assumed for fixed nonzero real numbers $$\alpha ,\beta ,\, 1 \ne \alpha ^2 \ne \beta ^2$$ α , β , 1 ≠ α 2 ≠ β 2 , and the classic quadratic functional equation $$\begin{aligned} g(x+y) + g(x-y) = 2g(x) + 2g(y). \end{aligned}$$ g ( x + y ) + g ( x - y ) = 2 g ( x ) + 2 g ( y ) . We were inspired by papers of Kim et al. (Abstract and applied analysis, vol. 2013, Hindawi Publishing Corporation, 2013) and Gordji and Khodaei (Abstract and applied analysis, vol. 2009, Hindawi Publishing Corporation, 2009), where the special case $$g = \gamma f$$ g = γ f was examined.


1985 ◽  
Vol 98 (2) ◽  
pp. 195-212 ◽  
Author(s):  
Patrick J. McCarthy

AbstractThe quadratic functional equation f(f(x)) *–Tf(x) + Dx = 0 is equivalent to the requirement that the graph be invariant under a certain linear map The induced projective map is used to show that the equation admits a rich supply of continuous solutions only when L is hyperbolic (T2 > 4D), and then only when T and D satisfy certain further conditions. The general continuous solution of the equation is given explicitly in terms of either (a) an expression involving an arbitrary periodic function, function additions, inverses and composites, or(b) suitable limits of such solutions.


Sign in / Sign up

Export Citation Format

Share Document