Ergodic Theory of Chaotic Dynamical Systems

Author(s):  
L.-S. Young
Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 302 ◽  
Author(s):  
Jean-Charles Delvenne

In this discussion paper we argue that category theory may play a useful role in formulating, and perhaps proving, results in ergodic theory, topogical dynamics and open systems theory (control theory). As examples, we show how to characterize Kolmogorov–Sinai, Shannon entropy and topological entropy as the unique functors to the nonnegative reals satisfying some natural conditions. We also provide a purely categorical proof of the existence of the maximal equicontinuous factor in topological dynamics. We then show how to define open systems (that can interact with their environment), interconnect them, and define control problems for them in a unified way.


2001 ◽  
Vol 08 (02) ◽  
pp. 137-146 ◽  
Author(s):  
Janusz Szczepański ◽  
Zbigniew Kotulski

Pseudorandom number generators are used in many areas of contemporary technology such as modern communication systems and engineering applications. In recent years a new approach to secure transmission of information based on the application of the theory of chaotic dynamical systems has been developed. In this paper we present a method of generating pseudorandom numbers applying discrete chaotic dynamical systems. The idea of construction of chaotic pseudorandom number generators (CPRNG) intrinsically exploits the property of extreme sensitivity of trajectories to small changes of initial conditions, since the generated bits are associated with trajectories in an appropriate way. To ensure good statistical properties of the CPRBG (which determine its quality) we assume that the dynamical systems used are also ergodic or preferably mixing. Finally, since chaotic systems often appear in realistic physical situations, we suggest a physical model of CPRNG.


1991 ◽  
Vol 05 (14) ◽  
pp. 2323-2345 ◽  
Author(s):  
R.E. AMRITKAR ◽  
P.M. GADE

We discuss different methods of characterizing the loss of memory of initial conditions in chaotic dynamical systems.


2008 ◽  
Vol 28 (3) ◽  
pp. 1043-1045 ◽  
Author(s):  
HIROKI SUMI

AbstractWe give a correction to the assumption of Theorems 1.12 and 2.6 in the paper [H. Sumi. Semi-hyperbolic fibered rational maps and rational semigroups. Ergod. Th. & Dynam. Sys.26 (2006), 893–922].


2014 ◽  
Vol 111 (21) ◽  
pp. 7511-7516 ◽  
Author(s):  
A. J. Majda ◽  
D. Qi ◽  
T. P. Sapsis

Sign in / Sign up

Export Citation Format

Share Document