Strong Laws for the k-th Order Statistic when k ≤ c log2n (II)

Author(s):  
Paul Deheuvels
Keyword(s):  
1986 ◽  
Vol 72 (1) ◽  
pp. 133-154 ◽  
Author(s):  
Paul Deheuvels
Keyword(s):  

2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


Sign in / Sign up

Export Citation Format

Share Document