The Effect of Training Data Set Size and the Complexity of the Separation Function on Neural Network Classification Capability: The Two-Group Case

Author(s):  
Moshe Leshno ◽  
Yishay Spector
2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Jeffrey Micher

We present a method for building a morphological generator from the output of an existing analyzer for Inuktitut, in the absence of a two-way finite state transducer which would normally provide this functionality. We make use of a sequence to sequence neural network which “translates” underlying Inuktitut morpheme sequences into surface character sequences. The neural network uses only the previous and the following morphemes as context. We report a morpheme accuracy of approximately 86%. We are able to increase this accuracy slightly by passing deep morphemes directly to output for unknown morphemes. We do not see significant improvement when increasing training data set size, and postulate possible causes for this.


2021 ◽  
Author(s):  
Yuqi Wang ◽  
Tianyuan Liu ◽  
Di Zhang

Abstract The research on the supercritical carbon dioxide (S-CO2) Brayton cycle has gradually become a hot spot in recent years. The off-design performance of turbine is an important reference for analyzing the variable operating conditions of the cycle. With the development of deep learning technology, the research of surrogate models based on neural network has received extensive attention. In order to improve the inefficiency in traditional off-design analyses, this research establishes a data-driven deep learning off-design aerodynamic prediction model for a S-CO2 centrifugal turbine, which is based on a deep convolutional neural network. The network can rapidly and adaptively provide dynamic aerodynamic performance prediction results for varying blade profiles and operating conditions. Meanwhile, it can illustrate the mechanism based on the field reconstruction results for the generated aerodynamic performance. The training results show that the off-design aerodynamic prediction convolutional neural network (OAP-CNN) has reduced the mean and maximum error of efficiency prediction compared with the traditional Gaussian Process Regression (GPR) and Artificial Neural Network (ANN). Aiming at the off-design conditions, the pressure and temperature distributions with acceptable error can be obtained without a CFD calculation. Besides, the influence of off-design parameters on the efficiency and power can be conveniently acquired, thus providing the reference for an optimized operation strategy. Analyzing the sensitivity of AOP-CNN to training data set size, the prediction accuracy is acceptable when the percentage of training samples exceeds 50%. The minimum error appears when the training data set size is 0.8. The mean and maximum errors are respectively 1.46% and 6.42%. In summary, this research provides a precise and fast aerodynamic performance prediction model in the analyses of off-design conditions for S-CO2 turbomachinery and Brayton cycle.


2016 ◽  
Vol 12 (2) ◽  
Author(s):  
Urszula Smyczyńska ◽  
Joanna Smyczyńska ◽  
Ryszard Tadeusiewicz

AbstractIt is well known that the structure of neural network and the amount of available training data influence the accuracy of developed models; however, the exact character of this relation depends on the chosen problem. Thus, it was decided to analyze what impact these parameters have on the solution of the problem on which we work – the prediction of final height of children treated with growth hormone. It was observed that multilayer perceptron with a wide range of numbers of hidden neurons (from 1 to 100) could solve the problem almost equally well. Thus, this task seems to be rather simple, not requiring complex models. Larger networks tended to produce less accurate results and did not generalize well while working with the data not used in training. Repeating the experiment with the training data set reduced to 50% of its original content, as expected, caused a decrease in accuracy.


1992 ◽  
Author(s):  
Rupert S. Hawkins ◽  
K. F. Heideman ◽  
Ira G. Smotroff

Author(s):  
Jungeui Hong ◽  
Elizabeth A. Cudney ◽  
Genichi Taguchi ◽  
Rajesh Jugulum ◽  
Kioumars Paryani ◽  
...  

The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis-Taguchi System and a neural network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The study uses the Wisconsin Breast Cancer study with nine attributes and one class.


Author(s):  
M. Takadoya ◽  
M. Notake ◽  
M. Kitahara ◽  
J. D. Achenbach ◽  
Q. C. Guo ◽  
...  

2014 ◽  
Vol 17 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Gurjeet Singh ◽  
Rabindra K. Panda ◽  
Marc Lamers

The reported study was undertaken in a small agricultural watershed, namely, Kapgari in Eastern India having a drainage area of 973 ha. The watershed was subdivided into three sub-watersheds on the basis of drainage network and land topography. An attempt was made to relate the continuously monitored runoff data from the sub-watersheds and the whole-watershed with the rainfall and temperature data using the artificial neural network (ANN) technique. The reported study also evaluated the bias in the prediction of daily runoff with shorter length of training data set using different resampling techniques with the ANN modeling. A 10-fold cross-validation (CV) technique was used to find the optimum number of hidden neurons in the hidden layer and to avoid neural network over-fitting during the training process for shorter length of data. The results illustrated that the ANN models developed with shorter length of training data set avoid neural network over-fitting during the training process, using a 10-fold CV method. Moreover, the biasness was investigated using the bootstrap resampling technique based ANN (BANN) for short length of training data set. In comparison with the 10-fold CV technique, the BANN is more efficient in solving the problems of the over-fitting and under-fitting during training of models for shorter length of data set.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
R. Manjula Devi ◽  
S. Kuppuswami ◽  
R. C. Suganthe

Artificial neural network has been extensively consumed training model for solving pattern recognition tasks. However, training a very huge training data set using complex neural network necessitates excessively high training time. In this correspondence, a new fast Linear Adaptive Skipping Training (LAST) algorithm for training artificial neural network (ANN) is instituted. The core essence of this paper is to ameliorate the training speed of ANN by exhibiting only the input samples that do not categorize perfectly in the previous epoch which dynamically reducing the number of input samples exhibited to the network at every single epoch without affecting the network’s accuracy. Thus decreasing the size of the training set can reduce the training time, thereby ameliorating the training speed. This LAST algorithm also determines how many epochs the particular input sample has to skip depending upon the successful classification of that input sample. This LAST algorithm can be incorporated into any supervised training algorithms. Experimental result shows that the training speed attained by LAST algorithm is preferably higher than that of other conventional training algorithms.


2014 ◽  
Vol 998-999 ◽  
pp. 1042-1045
Author(s):  
Xu An Qiao ◽  
Jing Liu

The pattern recognition process control diagram, this paper puts forward a new method of training neural network. It only needs a small training data set can complete this work. This method is also compatible with the training algorithm, and get a better network performance. Pattern recognition success rate is very high in the larger parameter range, but also has some comparability.


Sign in / Sign up

Export Citation Format

Share Document