Algorithms Guaranteeing Iterative Points within Nonnegative Orthant in Complementarity Problems

Author(s):  
Hou-Duo Qi
2009 ◽  
Vol 26 (02) ◽  
pp. 199-233 ◽  
Author(s):  
LINGCHEN KONG ◽  
LEVENT TUNÇEL ◽  
NAIHUA XIU

The implicit Lagrangian was first proposed by Mangasarian and Solodov as a smooth merit function for the nonnegative orthant complementarity problem. It has attracted much attention in the past ten years because of its utility in reformulating complementarity problems as unconstrained minimization problems. In this paper, exploiting the Jordan-algebraic structure, we extend it to the vector-valued implicit Lagrangian for symmetric cone complementary problem (SCCP), and show that it is a continuously differentiable complementarity function for SCCP and whose Jacobian is strongly semismooth. As an application, we develop the real-valued implicit Lagrangian and the corresponding smooth merit function for SCCP, and give a necessary and sufficient condition for the stationary point of the merit function to be a solution of SCCP. Finally, we show that this merit function can provide a global error bound for SCCP with the uniform Cartesian P-property.


2019 ◽  
Vol 17 (1) ◽  
pp. 1599-1614
Author(s):  
Zhiwu Hou ◽  
Xia Jing ◽  
Lei Gao

Abstract A new error bound for the linear complementarity problem (LCP) of Σ-SDD matrices is given, which depends only on the entries of the involved matrices. Numerical examples are given to show that the new bound is better than that provided by García-Esnaola and Peña [Linear Algebra Appl., 2013, 438, 1339–1446] in some cases. Based on the obtained results, we also give an error bound for the LCP of SB-matrices. It is proved that the new bound is sharper than that provided by Dai et al. [Numer. Algor., 2012, 61, 121–139] under certain assumptions.


Sign in / Sign up

Export Citation Format

Share Document