numer algor
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 2)

H-INDEX

0
(FIVE YEARS 0)

2022 ◽  
Vol 62 ◽  
pp. C98-C111
Author(s):  
Neil Dizon ◽  
Jeffrey Hogan ◽  
Scott Lindstrom

We introduce a two-stage global-then-local search method for solving feasibility problems. The approach pairs the advantageous global tendency of the Douglas–Rachford method to find a basin of attraction for a fixed point, together with the local tendency of the circumcentered reflections method to perform faster within such a basin. We experimentally demonstrate the success of the method for solving nonconvex problems in the context of wavelet construction formulated as a feasibility problem.  References F. J. Aragón Artacho, R. Campoy, and M. K. Tam. The Douglas–Rachford algorithm for convex and nonconvex feasibility problems. Math. Meth. Oper. Res. 91 (2020), pp. 201–240. doi: 10.1007/s00186-019-00691-9 R. Behling, J. Y. Bello Cruz, and L.-R. Santos. Circumcentering the Douglas–Rachford method. Numer. Algor. 78.3 (2018), pp. 759–776. doi: 10.1007/s11075-017-0399-5 R. Behling, J. Y. Bello-Cruz, and L.-R. Santos. On the linear convergence of the circumcentered-reflection method. Oper. Res. Lett. 46.2 (2018), pp. 159–162. issn: 0167-6377. doi: 10.1016/j.orl.2017.11.018 J. M. Borwein, S. B. Lindstrom, B. Sims, A. Schneider, and M. P. Skerritt. Dynamics of the Douglas–Rachford method for ellipses and p-spheres. Set-Val. Var. Anal. 26 (2018), pp. 385–403. doi: 10.1007/s11228-017-0457-0 J. M. Borwein and B. Sims. The Douglas–Rachford algorithm in the absence of convexity. Fixed-point algorithms for inverse problems in science and engineering. Springer, 2011, pp. 93–109. doi: 10.1007/978-1-4419-9569-8_6 I. Daubechies. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41.7 (1988), pp. 909–996. doi: 10.1002/cpa.3160410705 N. D. Dizon, J. A. Hogan, and J. D. Lakey. Optimization in the construction of nearly cardinal and nearly symmetric wavelets. In: 13th International conference on Sampling Theory and Applications (SampTA). 2019, pp. 1–4. doi: 10.1109/SampTA45681.2019.9030889 N. D. Dizon, J. A. Hogan, and S. B. Lindstrom. Circumcentering reflection methods for nonconvex feasibility problems. arXiv preprint arXiv:1910.04384 (2019). url: https://arxiv.org/abs/1910.04384 D. J. Franklin. Projection algorithms for non-separable wavelets and Clifford Fourier analysis. PhD thesis. University of Newcastle, 2018. doi: 1959.13/1395028. D. J. Franklin, J. A. Hogan, and M. K. Tam. A Douglas–Rachford construction of non-separable continuous compactly supported multidimensional wavelets. arXiv preprint arXiv:2006.03302 (2020). url: https://arxiv.org/abs/2006.03302 D. J. Franklin, J. A. Hogan, and M. K. Tam. Higher-dimensional wavelets and the Douglas–Rachford algorithm. 13th International conference on Sampling Theory and Applications (SampTA). 2019, pp. 1–4. doi: 10.1109/SampTA45681.2019.9030823 B. P. Lamichhane, S. B. Lindstrom, and B. Sims. Application of projection algorithms to differential equations: Boundary value problems. ANZIAM J. 61.1 (2019), pp. 23–46. doi: 10.1017/S1446181118000391 S. B. Lindstrom and B. Sims. Survey: Sixty years of Douglas–Rachford. J. Aust. Math. Soc. 110 (2020), 1–38. doi: 10.1017/S1446788719000570 S. B. Lindstrom, B. Sims, and M. P. Skerritt. Computing intersections of implicitly specified plane curves. J. Nonlin. Convex Anal. 18.3 (2017), pp. 347–359. url: http://www.yokohamapublishers.jp/online2/jncav18-3 S. G. Mallat. Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. Amer. Math. Soc. 315.1 (1989), pp. 69–87. doi: 10.1090/S0002-9947-1989-1008470-5 Y. Meyer. Wavelets and operators. Cambridge University Press, 1993. doi: 10.1017/CBO9780511623820 G. Pierra. Decomposition through formalization in a product space. Math. Program. 28 (1984), pp. 96–115. doi: 10.1007/BF02612715


2019 ◽  
Vol 17 (1) ◽  
pp. 1599-1614
Author(s):  
Zhiwu Hou ◽  
Xia Jing ◽  
Lei Gao

Abstract A new error bound for the linear complementarity problem (LCP) of Σ-SDD matrices is given, which depends only on the entries of the involved matrices. Numerical examples are given to show that the new bound is better than that provided by García-Esnaola and Peña [Linear Algebra Appl., 2013, 438, 1339–1446] in some cases. Based on the obtained results, we also give an error bound for the LCP of SB-matrices. It is proved that the new bound is sharper than that provided by Dai et al. [Numer. Algor., 2012, 61, 121–139] under certain assumptions.


2018 ◽  
Vol 10 (10) ◽  
pp. 168781401880409
Author(s):  
Qin-Qin Shen ◽  
Quan Shi

In this article, to better implement the modified positive-definite and skew-Hermitian splitting preconditioners studied recently (Numer. Algor., 72 (2016) 243–258) for generalized saddle point problems, a class of inexact modified positive-definite and skew-Hermitian splitting preconditioners is proposed with improved computing efficiency. Some spectral properties, including the eigenvalue distribution, the eigenvector distribution, and an upper bound of the degree of the minimal polynomial of the inexact modified positive-definite and skew-Hermitian splitting preconditioned matrices are studied. In addition, a theoretical optimal inexact modified positive-definite and skew-Hermitian splitting preconditioner is obtained. Numerical experiments arising from a model steady incompressible Navier–Stokes problem are used to validate the theoretical results and illustrate the effectiveness of this new class of proposed preconditioners.


Sign in / Sign up

Export Citation Format

Share Document