Infarct Size Reduction by Antiarrhythmic Prophylaxis — A Contrary View

Author(s):  
R. W. F. Campbell ◽  
P. Kertes
2013 ◽  
Vol 34 (suppl 1) ◽  
pp. 777-777
Author(s):  
I. Andreadou ◽  
A. Lazari ◽  
S. I. Bibli ◽  
N. Gaboriaud-Kolar ◽  
A. L. Skaltsounis ◽  
...  

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Eric R Gross ◽  
Travis J Urban ◽  
Ana K Hsu ◽  
Nir Qvit ◽  
Garrett J Gross ◽  
...  

Introduction: The transient receptor potential 1 channel (TRPV1) mediates signals from pain, heat, and/or noxious stimuli. TRPV1 sensitization can occur via a protein kinase C (PKC)-dependent mechanism in neurons. Therefore, we tested whether TRPV1 is a mediator of cardioprotection in models of ischemia-reperfusion and whether the molecular mechanism of cardioprotection occurs via PKC-induced TRPV1 channel sensitization. Methods: Male Sprague Dawley rats and H9C2 left ventricle-derived cells were used for whole animal and cellular ischemia-reperfusion studies to test this hypothesis. Statistical analysis regarding infarct size, calculated as percentage of area at risk per left ventricle, was performed by a one way ANOVA (*P<0.01). Results: Remote preconditioning-induced infarct size reduction via an abdominal surgical incision was blocked by prior administration of a selective TRPV1 peptide inhibitor, V1-B (3.0mg/kg), given over the incision site (Incision: 44±2*% V1-B+Incision: 65±2% versus Control: 64±1% n=6/group). Capsaicin (0.3mg/kg) given intravenously through the internal jugular vein reduced infarct size in vivo , which was blocked by prior capsazepine (TRPV1 inhibitor, 3.0mg/kg) administration (Capsaicin: 43±2* Capsaicin+ capsazepine: 64±4 versus Control: 62±3, n=7/group). Further in an ex vivo isolated heart model, infarct size reduction afforded by the selective epsilon PKC activator (pseudo epsilon RACK, 1uM) was partially blocked with prior treatment of V1-B (1uM), the TRPV1 peptide blocker (pseudo epsilon RACK: 20±2*%, pseudo epsilon RACK+V1-B: 42±4% versus control: 47±4%, n=7/group). TRPV1 expression was found in both whole heart homogenate and in the H9C2 cell line. Using a model of ischemia-reoxygenation in H9C2 cells, capsaicin treatment before and during ischemia-reoxygenation reduced cellular damage as assessed by MTT and LDH assays. Greater damage occurred with TRPV1 inhibition by capsazepine compared to control. Conclusions: Our studies suggest TRPV1 contributes an essential role for both remote and direct cardioprotection. Further studies are ongoing to determine the post-translational sites on TRPV1 and how a TRPV1-epsilon PKC protein-protein interaction induces cardioprotection.


2016 ◽  
Vol 32 (10) ◽  
pp. S192-S193
Author(s):  
S. Der Sarkissian ◽  
H. Aceros ◽  
L. Stevens ◽  
M. Borie ◽  
S. Mansour ◽  
...  

2000 ◽  
Vol 279 (6) ◽  
pp. H2694-H2703 ◽  
Author(s):  
Yoshiya Toyoda ◽  
Ingeborg Friehs ◽  
Robert A. Parker ◽  
Sidney Levitsky ◽  
James D. McCully

Adenosine-enhanced ischemic preconditioning (APC) extends the protection afforded by ischemic preconditioning (IPC) by both significantly decreasing infarct size and significantly enhancing postischemic functional recovery. The purpose of this study was to determine whether APC is modulated by ATP-sensitive potassium (KATP) channels and to determine whether this modulation occurs before ischemia or during reperfusion. The role of KATP channels before ischemia (I), during reperfusion (R), or during ischemia and reperfusion (IR) was investigated using the nonspecific KATP blocker glibenclamide (Glb), the mitochondrial (mito) KATP channel blocker 5-hydroxydecanoate (5-HD), and the sarcolemmal (sarc) KATPchannel blocker HMR-1883 (HMR). Infarct size was significantly increased ( P < 0.05) in APC hearts with Glb-I, Glb-R, and 5-HD-I treatment and partially with 5-HD-R. Glb-I and Glb-R treatment significantly decreased APC functional recovery ( P < 0.05 vs. APC), whereas 5-HD-I and 5-HD-R had no effect on APC functional recovery. HMR-IR significantly decreased postischemic functional recovery ( P < 0.05 vs. APC) but had no effect on infarct size. These data indicate that APC infarct size reduction is modulated by mitoKATP channels primarily during ischemia and suggest that functional recovery is modulated by sarcKATP channels during ischemia and reperfusion.


Sign in / Sign up

Export Citation Format

Share Document