Group Schemes, Formal Groups, and p-Divisible Groups

1986 ◽  
pp. 29-78 ◽  
Author(s):  
Stephen S. Shatz
1971 ◽  
Vol 42 ◽  
pp. 1-7 ◽  
Author(s):  
Hiroshi Umemura

The formal moduli for one-parameter formal Lie groups was constructed by Lubin and Tate (1) by using Lazard’s methods. The aime of this paper is to prove the existence of the formal moduli for higher dimensional formal groups.


2018 ◽  
Vol 154 (9) ◽  
pp. 1974-2004 ◽  
Author(s):  
Eike Lau

The Dieudonné crystal of a $p$-divisible group over a semiperfect ring $R$ can be endowed with a window structure. If $R$ satisfies a boundedness condition, this construction gives an equivalence of categories. As an application we obtain a classification of $p$-divisible groups and commutative finite locally free $p$-group schemes over perfectoid rings by Breuil–Kisin–Fargues modules if $p\geqslant 3$.


Author(s):  
Ulrich Görtz ◽  
Xuhua He ◽  
Michael Rapoport

Abstract We investigate qualitative properties of the underlying scheme of Rapoport–Zink formal moduli spaces of p-divisible groups (resp., shtukas). We single out those cases where the dimension of this underlying scheme is zero (resp., those where the dimension is the maximal possible). The model case for the first alternative is the Lubin–Tate moduli space, and the model case for the second alternative is the Drinfeld moduli space. We exhibit a complete list in both cases.


Author(s):  
Piergiulio Tempesta

We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the Z-entropies . Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every Z -entropy is composable (Tempesta 2016 Ann. Phys. 365 , 180–197. ( doi:10.1016/j.aop.2015.08.013 )). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon–Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the Z -entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies.


Sign in / Sign up

Export Citation Format

Share Document