Degenerate Harmonic Maps and Liquid Crystals

Author(s):  
Hyeong In Choi
2019 ◽  
Vol 12 (4) ◽  
pp. 363-392
Author(s):  
Stuart Day ◽  
Arghir Dani Zarnescu

AbstractWe consider an energy functional motivated by the celebrated {K_{13}} problem in the Oseen–Frank theory of nematic liquid crystals. It is defined for sphere-valued functions and appears as the usual Dirichlet energy with an additional surface term. It is known that this energy is unbounded from below and our aim has been to study the local minimisers. We show that even having a critical point in a suitable energy space imposes severe restrictions on the boundary conditions. Having suitable boundary conditions makes the energy functional bounded and in this case we study the partial regularity of the global minimisers.


1993 ◽  
Vol 213 (1) ◽  
pp. 575-593 ◽  
Author(s):  
Robert Hardt ◽  
Fang Hua Lin

Author(s):  
M. Locke ◽  
J. T. McMahon

The fat body of insects has always been compared functionally to the liver of vertebrates. Both synthesize and store glycogen and lipid and are concerned with the formation of blood proteins. The comparison becomes even more apt with the discovery of microbodies and the localization of urate oxidase and catalase in insect fat body.The microbodies are oval to spherical bodies about 1μ across with a depression and dense core on one side. The core is made of coiled tubules together with dense material close to the depressed membrane. The tubules may appear loose or densely packed but always intertwined like liquid crystals, never straight as in solid crystals (Fig. 1). When fat body is reacted with diaminobenzidine free base and H2O2 at pH 9.0 to determine the distribution of catalase, electron microscopy shows the enzyme in the matrix of the microbodies (Fig. 2). The reaction is abolished by 3-amino-1, 2, 4-triazole, a competitive inhibitor of catalase. The fat body is the only tissue which consistantly reacts positively for urate oxidase. The reaction product is sharply localized in granules of about the same size and distribution as the microbodies. The reaction is inhibited by 2, 6, 8-trichloropurine, a competitive inhibitor of urate oxidase.


Sign in / Sign up

Export Citation Format

Share Document