Localized Activity States for Neuronal Field Equations of Feature Selectivity in a Stimulus Space with Toroidal Topology

2011 ◽  
pp. 207-216
Author(s):  
Evan C. Haskell ◽  
Vehbi E. Paksoy
1993 ◽  
Vol 3 (8) ◽  
pp. 1861-1872 ◽  
Author(s):  
J. P. Julien ◽  
D. Mayou

Author(s):  
Richard R. Freeman ◽  
James A. King ◽  
Gregory P. Lafyatis

Electromagnetic Radiation is a graduate level book on classical electrodynamics with a strong emphasis on radiation. This book is meant to quickly and efficiently introduce students to the electromagnetic radiation science essential to a practicing physicist. While a major focus is on light and its interactions, topics in radio frequency radiation, x-rays, and beyond are also treated. Special emphasis is placed on applications, with many exercises and homework problems. The format of the book is designed to convey the basic concepts of a topic in the main central text in the book in a mathematically rigorous manner, but with detailed derivations routinely relegated to the accompanying side notes or end of chapter “Discussions.” The book is composed of four parts: Part I is a review of basic E&M, and assumes the reader has a had a good upper division undergraduate course, and while it offers a concise review of topics covered in such a course, it does not treat any given topic in detail; specifically electro- and magnetostatics. Part II addresses the origins of radiation in terms of time variations of charge and current densities within the source, and presents Jefimenko’s field equations as derived from retarded potentials. Part III introduces special relativity and its deep connection to Maxwell’s equations, together with an introduction to relativistic field theory, as well as the relativistic treatment of radiation from an arbitrarily accelerating charge. A highlight of this part is a chapter on the still partially unresolved problem of radiation reaction on an accelerating charge. Part IV treats the practical problems of electromagnetic radiation interacting with matter, with chapters on energy transport, scattering, diffraction and finally an illuminating, application-oriented treatment of fields in confined environments.


Author(s):  
Steven Carlip

This work is a short textbook on general relativity and gravitation, aimed at readers with a broad range of interests in physics, from cosmology to gravitational radiation to high energy physics to condensed matter theory. It is an introductory text, but it has also been written as a jumping-off point for readers who plan to study more specialized topics. As a textbook, it is designed to be usable in a one-quarter course (about 25 hours of instruction), and should be suitable for both graduate students and advanced undergraduates. The pedagogical approach is “physics first”: readers move very quickly to the calculation of observational predictions, and only return to the mathematical foundations after the physics is established. The book is mathematically correct—even nonspecialists need to know some differential geometry to be able to read papers—but informal. In addition to the “standard” topics covered by most introductory textbooks, it contains short introductions to more advanced topics: for instance, why field equations are second order, how to treat gravitational energy, what is required for a Hamiltonian formulation of general relativity. A concluding chapter discusses directions for further study, from mathematical relativity to experimental tests to quantum gravity.


Sign in / Sign up

Export Citation Format

Share Document