physics first
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 1)

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 414
Author(s):  
Peter W. Egolf ◽  
Kolumban Hutter

Even though applications of direct numerical simulations are on the rise, today the most usual method to solve turbulence problems is still to apply a closure scheme of a defined order. It is not the case that a rising order of a turbulence model is always related to a quality improvement. Even more, a conceptual advantage of applying a lowest order turbulence model is that it represents the analogous method to the procedure of introducing a constitutive equation which has brought success to many other areas of physics. First order turbulence models were developed in the 1920s and today seem to be outdated by newer and more sophisticated mathematical-physical closure schemes. However, with the new knowledge of fractal geometry and fractional dynamics, it is worthwhile to step back and reinvestigate these lowest order models. As a result of this and simultaneously introducing generalizations by multiscale analysis, the first order, nonlinear, nonlocal, and fractional Difference-Quotient Turbulence Model (DQTM) was developed. In this partial review article of work performed by the authors, by theoretical considerations and its applications to turbulent flow problems, evidence is given that the DQTM is the missing (apparent) constitutive equation of turbulent shear flows.


Author(s):  
Yang-Hui He

In this paper, we briefly overview how, historically, string theory led theoretical physics first to precise problems in algebraic and differential geometry, and thence to computational geometry in the last decade or so, and now, in the last few years, to data science. Using the Calabi–Yau landscape — accumulated by the collaboration of physicists, mathematicians and computer scientists over the last four decades — as a starting-point and concrete playground, we review some recent progress in machine-learning applied to the sifting through of possible universes from compactification, as well as wider problems in geometrical engineering of quantum field theories. In parallel, we discuss the program in machine-learning mathematical structures and address the tantalizing question of how it helps doing mathematics, ranging from mathematical physics, to geometry, to representation theory, to combinatorics and to number theory.


2021 ◽  
Author(s):  
Hui Peng

Abstract Young’s double slit experiments, which represent the mystery of quantum mechanics, have been described by either the classical wave, or quantum probability waves or pilot waves. Recently, the novel experiments show that the interference patterns of the double slit/cross-double slit experiments may be curved. The previous phenomena of the light bending contain the gravity bending and Airy beam curving transversely. The curved Airy beam is interpreted by the quantum Schrödinger’s wave equation and electromagnetic wave theory. To study the curved interference patterns of the comprehensive double slit experiments, we study the underlying physics first, namely, to study whether the light beam/photons behave as wave or as particle before forming the curved interference pattern. In this article, the comprehensive double slit experiments are performed, which show: (1) the fringes of the curved interference pattern are created independently and may be create partially; (2) the longitudinal shield and the metal tube inserted between the slide and the detector has no effect on the interference pattern. The experimental observations suggest that, before forming the curved interference pattern on the detector, photons behave as particles, which can be referred as “wave-particle-coexistence”. The phenomena provide the comprehensive information/data for the theoretical study.


2021 ◽  
Vol 59 (7) ◽  
pp. 535-539
Author(s):  
Lillian Apple ◽  
John Baunach ◽  
Glenda Connelly ◽  
Sonia Gahlhoff ◽  
Colleen Megowan ◽  
...  

2021 ◽  
Author(s):  
James B. Hartle

Einstein's theory of general relativity is a cornerstone of modern physics. It also touches upon a wealth of topics that students find fascinating – black holes, warped spacetime, gravitational waves, and cosmology. Now reissued by Cambridge University Press, this ground-breaking text helped to bring general relativity into the undergraduate curriculum, making it accessible to virtually all physics majors. One of the pioneers of the 'physics-first' approach to the subject, renowned relativist James B. Hartle, recognized that there is typically not enough time in a short introductory course for the traditional, mathematics-first, approach. In this text, he provides a fluent and accessible physics-first introduction to general relativity that begins with the essential physical applications and uses a minimum of new mathematics. This market-leading text is ideal for a one-semester course for undergraduates, with only introductory mechanics as a prerequisite.


2020 ◽  
Vol 227 ◽  
pp. 01004
Author(s):  
Scilla Degl’Innocenti

This contribution is meant as a very brief introduction to the principal concepts of stellar physics. First the main physical processes active in stellar structures will be shortly described, then the most important features during the stellar life-cycle up to the central H exhaustion will be summarized with partic-ular attention to the description of solar models.


2019 ◽  
Vol 4 (1) ◽  
pp. 76-95
Author(s):  
Neusa Teresinha Massoni ◽  
Jenner Barretto Bastos Filho
Keyword(s):  

2019 ◽  
Vol 75 (6) ◽  
pp. 798-813 ◽  
Author(s):  
Takahiro Nishiyama

Magnetic groups are applied to three-dimensional fluid flows with chirality, which are called Beltrami flows (or force-free fields in plasma physics). First, six Beltrami flows are derived so that their symmetries and antisymmetries are described by six different hexagonal magnetic groups. The general Wyckoff positions are used to derive the flows. Special Wyckoff positions are shown to be useful for finding the zero points of the flows. Tube-like surfaces called invariant tori are observed to interlace and form various crystal-like structures when streamlines winding around the surfaces are numerically plotted. Next, two simpler hexagonal Beltrami flows are derived, and their zero points and invariant tori are studied. Some families of the invariant tori have arrangements similar to those observed in materials science.


2019 ◽  
Vol 10 (01) ◽  
pp. 13-32
Author(s):  
Shoji Nagamiya ◽  
Hideto En’yo ◽  
Hirokazu Tamura

Here, we consider the future of accelerators in nuclear physics. First, we look at the future of unstable beams toward a broader region of nuclei. Second, we review the possibilities in generating new forms of nuclear matter with heavy-ion beams. Third, we discuss the efforts to produce stronger powered proton beams for generating secondary particles, including neutrinos, kaons, muons, and anti-protons. Fourth, we discuss the possible electron–ion scatterings including their colliders. Other subjects such as hadron spectroscopy are not covered.


2019 ◽  
Vol 33 (14) ◽  
pp. 1950139
Author(s):  
Tian Ma ◽  
Shouhong Wang

The main objective of this paper is to introduce a new quantum mechanism of condensates and superconductivity based on a new interpretation of quantum mechanical wavefunctions, and on recent developments in quantum physics and statistical physics. First, we postulate that the wavefunction [Formula: see text]e[Formula: see text] is the common wavefunction for all particles in the same class determined by the external potential V(x), [Formula: see text](x)[Formula: see text] represents the distribution density of the particles, and [Formula: see text] is the velocity field of the particles. Although the new interpretation does not alter the basic theories of quantum mechanics, it is an entirely different interpretation from the classical Bohr interpretation, removes all absurdities and offers new insights for quantum physics and for condensed matter physics. Second, we show that the key for condensation of bosonic particles is that their interaction is sufficiently weak to ensure that a large collection of boson particles are in a state governed by the same condensation wavefunction field [Formula: see text] under the same bounding potential V. For superconductivity, the formation of superconductivity comes down to conditions for the formation of electron pairs, and for the electron pairs to share a common wavefunction. Thanks to the recently developed principle of interaction dynamics (PID) interaction potential of electrons and the average-energy level formula of temperature, these conditions for superconductivity are explicitly derived. Furthermore, we obtain both microscopic and macroscopic formulas for the critical temperature. The field and topological phase transition equations for condensates are also derived.


Sign in / Sign up

Export Citation Format

Share Document