Industrial Gases

Author(s):  
Steven J. Cooke
Keyword(s):  
Holzforschung ◽  
2020 ◽  
Vol 74 (11) ◽  
pp. 1071-1078
Author(s):  
Jie Chu ◽  
Anuj Kumar

AbstractThe implementation of circular economy in wood industries is an effective way for future sustainable development. The wood industries in China are not in the direction of circular economy approach due to less availability of assessment/calculation data of pollutants as per life cycle assessment (LCA) criteria. The present study focuses on the calculation of emission and pollutants from wood industries as per LCA; the emission and pollution data were collected from fiberboard Medium-density fiberboard (MDF), plywood and particleboard (PB) production. The comparative analysis of dust emissions, industrial waste gases and chemical oxygen demand (COD) were performed among three wood industries. The results revealed that the fiberboard industry was the highest emitter of dust, industrial waste gas and COD; and particleboard industry was the least emitter. Further, results indicated that pollutant index of wood industries were significantly changed between 2015 and 2017; the industrial waste water discharge increased five folds and the COD, dust and industrial gases increased two times. This study provides with the emission and pollutants data of wood industries as per LCA to promote the sustainable development for circular and low carbon economics.


1989 ◽  
Vol 67 (3) ◽  
pp. 19
Author(s):  
WILLIAM STORCK
Keyword(s):  

1973 ◽  
Vol 45 (14) ◽  
pp. 1189A-1189A
Keyword(s):  

1973 ◽  
Vol 45 (10) ◽  
pp. 2LG-2LG
Keyword(s):  

2021 ◽  
Author(s):  
Adam Sapnik ◽  
Christopher W. Ashling ◽  
Lauren K. Macreadie ◽  
Seok J. Lee ◽  
Tim Johnson ◽  
...  

<div><p>Disordered metal–organic frameworks are emerging as an attractive class of functional materials, however their applications in gas storage and separation have yet to be fully explored. Here, we investigate gas adsorption in the topologically disordered Fe-BTC framework and its crystalline counterpart, MIL‑100. Despite their similar chemistry and local structure, they exhibit very different sorption behaviour towards a range of industrial gases, noble gases and hydrocarbons. Virial analysis reveals that Fe-BTC has enhanced interaction strength with guest molecules compared to MIL‑100. Most notably, we observe striking discrimination between the adsorption of C<sub>3</sub>H<sub>6</sub> and C<sub>3</sub>H<sub>8</sub> in Fe‑BTC, with over a twofold increase in the amount of C<sub>3</sub>H<sub>6</sub> being adsorbed than C<sub>3</sub>H<sub>8</sub>. Thermodynamic selectivity towards a range of industrially relevant binary mixtures is probed using ideal adsorbed solution theory (IAST). Together, this suggests the disordered material may possess powerful separation capabilities that are rare even amongst crystalline frameworks.</p></div>


Sign in / Sign up

Export Citation Format

Share Document