The Mean Field Type Control Problems

Author(s):  
Alain Bensoussan ◽  
Jens Frehse ◽  
Phillip Yam
2019 ◽  
Vol 25 ◽  
pp. 10
Author(s):  
Alain Bensoussan ◽  
Sheung Chi Phillip Yam

In this article, we study a control problem in an appropriate space of random variables; in fact, in our set up, we can consider an arbitrary Hilbert space, yet we specialize only to a Hilbert space of square-integrable random variables. We see that the control problem can then be related to a mean field type control problem. We explore here a suggestion of Lions in (Lectures at College de France, http://www.college-de-france.fr) and (Seminar at College de France). Mean field type control problems are control problems in which functionals depend on probability measures of the underlying controlled process. Gangbo and Święch [J. Differ. Equ. 259 (2015) 6573–6643] considered this type of problem in the space of probability measures equipped with the Wasserstein metric and use the concept of Wasserstein gradient; their work provides a completely rigorous treatment, but it is quite intricate, because metric spaces are not vector spaces. The approach suggested by Lions overcomes this difficulty. Nevertheless, our present proposed approach also benefits from the useful concept of L-derivatives as introduced in a recent interesting treatise of Carmona and Delarue [Probabilistic Theory of Mean Field Games with Applications. Springer Verlag (2017)]. We also consider Bellman equation and the Master equation of mean field type control. We provide also some extension of the results of Gangbo and Święch [J. Differ. Equ. 259 (2015) 6573–6643].


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1669
Author(s):  
Jun Moon ◽  
Wonhee Kim

We consider the indefinite, linear-quadratic, mean-field-type stochastic zero-sum differential game for jump-diffusion models (I-LQ-MF-SZSDG-JD). Specifically, there are two players in the I-LQ-MF-SZSDG-JD, where Player 1 minimizes the objective functional, while Player 2 maximizes the same objective functional. In the I-LQ-MF-SZSDG-JD, the jump-diffusion-type state dynamics controlled by the two players and the objective functional include the mean-field variables, i.e., the expected values of state and control variables, and the parameters of the objective functional do not need to be (positive) definite matrices. These general settings of the I-LQ-MF-SZSDG-JD make the problem challenging, compared with the existing literature. By considering the interaction between two players and using the completion of the squares approach, we obtain the explicit feedback Nash equilibrium, which is linear in state and its expected value, and expressed as the coupled integro-Riccati differential equations (CIRDEs). Note that the interaction between the players is analyzed via a class of nonanticipative strategies and the “ordered interchangeability” property of multiple Nash equilibria in zero-sum games. We obtain explicit conditions to obtain the Nash equilibrium in terms of the CIRDEs. We also discuss the different solvability conditions of the CIRDEs, which lead to characterization of the Nash equilibrium for the I-LQ-MF-SZSDG-JD. Finally, our results are applied to the mean-field-type stochastic mean-variance differential game, for which the explicit Nash equilibrium is obtained and the simulation results are provided.


2015 ◽  
Vol 60 (10) ◽  
pp. 2640-2649 ◽  
Author(s):  
Boualem Djehiche ◽  
Hamidou Tembine ◽  
Raul Tempone

Sign in / Sign up

Export Citation Format

Share Document