Representation of Temporal Patterns of Signal Amplitude in the Anuran Auditory System and Electrosensory System

Author(s):  
Gary J. Rose
Author(s):  
Nuriye Yıldırım Gökay ◽  
Bülent Gündüz ◽  
Fatih Söke ◽  
Recep Karamert

Purpose The effects of neurological diseases on the auditory system have been a notable issue for investigators because the auditory pathway is closely associated with neural systems. The purposes of this study are to evaluate the efferent auditory system function and hearing quality in Parkinson's disease (PD) and to compare the findings with age-matched individuals without PD to present a perspective on aging. Method The study included 35 individuals with PD (mean age of 48.50 ± 8.00 years) and 35 normal-hearing peers (mean age of 49 ± 10 years). The following tests were administered for all participants: the first section of the Speech, Spatial and Qualities of Hearing Scale; pure-tone audiometry, speech audiometry, tympanometry, and acoustic reflexes; and distortion product otoacoustic emissions (DPOAEs) and contralateral suppression of DPOAEs. SPSS Version 25 was used for statistical analyses, and values of p < .05 were considered statistically significant. Results There were no statistically significant differences in the pure-tone audiometry thresholds and DPOAE responses between the individuals with PD and their normal-hearing peers ( p = .732). However, statistically significant differences were found between the groups in suppression levels of DPOAEs and hearing quality ( p < .05). In addition, a statistically significant and positive correlation was found between the amount of suppression at some frequencies and the Speech, Spatial and Qualities of Hearing Scale scores. Conclusions This study indicates that medial olivocochlear efferent system function and the hearing quality of individuals with PD were affected adversely due to the results of PD pathophysiology on the hearing system. For optimal intervention and follow-up, tasks related to hearing quality in daily life can also be added to therapies for PD.


2005 ◽  
Vol 32 (Spring) ◽  
pp. 5-10 ◽  
Author(s):  
Elizabeth Hester
Keyword(s):  

1969 ◽  
Vol 12 (1) ◽  
pp. 199-209 ◽  
Author(s):  
David A. Nelson ◽  
Frank M. Lassman ◽  
Richard L. Hoel

Averaged auditory evoked responses to 1000-Hz 20-msec tone bursts were obtained from normal-hearing adults under two different intersignal interval schedules: (1) a fixed-interval schedule with 2-sec intersignal intervals, and (2) a variable-interval schedule of intersignal intervals ranging randomly from 1.0 sec to 4.5 sec with a mean of 2 sec. Peak-to-peak amplitudes (N 1 — P 2 ) as well as latencies of components P 1 , N 1 , P 2 , and N 2 were compared under the two different conditions of intersignal interval. No consistent or significant differences between variable- and fixed-interval schedules were found in the averaged responses to signals of either 20 dB SL or 50 dB SL. Neither were there significant schedule differences when 35 or 70 epochs were averaged per response. There were, however, significant effects due to signal amplitude and to the number of epochs averaged per response. Response amplitude increased and response latency decreased with sensation level of the tone burst.


1986 ◽  
Vol 29 (3) ◽  
pp. 420-424 ◽  
Author(s):  
Michael Dorman ◽  
Ingrid Cedar ◽  
Maureen Hannley ◽  
Marjorie Leek ◽  
Julie Mapes Lindholm

Computer synthesized vowels of 50- and 300-ms duration were presented to normal-hearing listeners at a moderate and high sound pressure level (SPL). Presentation at the high SPL resulted in poor recognition accuracy for vowels of a duration (50 ms) shorter than the latency of the acoustic stapedial reflex. Presentation level had no effect on recognition accuracy for vowels of sufficient duration (300 ms) to elicit the reflex. The poor recognition accuracy for the brief, high intensity vowels was significantly improved when the reflex was preactivated. These results demonstrate the importance of the acoustic reflex in extending the dynamic range of the auditory system for speech recognition.


1978 ◽  
Vol 23 (11) ◽  
pp. 856-857
Author(s):  
W. LAWRENCE GULICK
Keyword(s):  

2013 ◽  
Author(s):  
J. Navarro ◽  
L. Ceja ◽  
J. Poppelbaum ◽  
D. Gomes
Keyword(s):  

2011 ◽  
Author(s):  
Karen Sixkiller ◽  
Jason Coronel ◽  
Kara Federmier

2019 ◽  
Vol 38 (2) ◽  
pp. 239-254
Author(s):  
M.B. SINGH ◽  
◽  
NITIN KUMAR MISHRA ◽  

Sign in / Sign up

Export Citation Format

Share Document