scholarly journals A Parametric Study of Viscous Fingering in Miscible Displacement by Numerical Simulation

Author(s):  
D. E. Moissis ◽  
C. A. Miller ◽  
M. F. Wheeler
Author(s):  
J.Ajay Paul ◽  
Sagar Chavan Vijay ◽  
U. Magarajan ◽  
R.Thundil Karuppa Raj

In this experiment the single cylinder air cooled engines was assumed to be a set of annular fins mounted on a cylinder. Numerical simulations were carried out to determine the heat transfer characteristics of different fin parameters namely, number of fins, fin thickness at varying air velocities. A cylinder with a single fin mounted on it was tested experimentally. The numerical simulation of the same setup was done using CFD. The results validated with close accuracy with the experimental results. Cylinders with fins of 4 mm and 6 mm thickness were simulated for 1, 3, 4 &6 fin configurations.


2020 ◽  
Vol 60 (9) ◽  
pp. 2111-2121
Author(s):  
Youbin Kwon ◽  
Jihyun Yoon ◽  
Seung‐Yeol Jeon ◽  
Daehwan Cho ◽  
Kwangjin Lee ◽  
...  

Author(s):  
Kiyoharu Tsunokawa ◽  
Taku Ohira ◽  
Naoki Miura ◽  
Yasumi Kitajima ◽  
Daisuke Yoshimura

Although the reinforcement for openings is checked in accordance with design / construction standard when thinning was observed in T-pipes, this evaluation becomes too conservative or requires much time and effort. This paper describes additional parametric study results and proposes a guideline for thickness management of wall thinning T-pipes. On the other papers related to this project, the experiment and numerical simulation results are reported. This paper referred these results and performed further investigation.


2014 ◽  
Vol 638-640 ◽  
pp. 1750-1753
Author(s):  
Yu Chao Zheng ◽  
Yang Yan ◽  
Pei Jun Wang

A systematic parametric study was carried out to investigate the elastic and elastic-plastic buckling behaviors of imperfect steel shell subject to axial compression and internal pressure. Studied parameters include the magnitude of internal pressure, steel strength, and ratio of cylinder radius to shell thickness. Design equations were proposed for calculating the elastic and elastic-plastic buckling strength of imperfect steel shells under combination of axial compression and internal pressure. The buckling strength predicated by proposed equations agrees well with that from the numerical simulation.


2020 ◽  
Vol 61 (4) ◽  
pp. 539-545
Author(s):  
A. Nemati ◽  
H. Saffari ◽  
B. Z. Vamerzani ◽  
R. Azizi ◽  
S. M. Hosseinalipoor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document